Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension

Sergio Cabello
University of Ljubljana
Slovenia

Panos Giannopoulos
Tel Aviv University
Christian Knauer
FU Berlin
Dániel Marx
Budapest University T& E
Günter Rote
FU Berlin
Motivation

Computational geometry parameterized by the dimension

Parameterized Complexity \hspace{1cm} \hspace{1cm} Computational Geometry
k-center problem

- k-center optimization problem
 - *Input*: a set of n points S in \mathbb{R}^d
 - *Task*: find the smallest k congruent balls that cover S

- k-center decision problem
 - *Input*: a set of n points S in \mathbb{R}^d
 - *Question*: can S be covered with k unit balls?
\textit{k-center problem}

- \textit{k-center optimization problem}
 \begin{itemize}
 \item \textit{Input}: a set of \(n \) points \(S \) in \(\mathbb{R}^d \)
 \item \textit{Task}: find the smallest \(k \) congruent balls that cover \(S \)
 \end{itemize}

- \textit{k-center decision problem}
 \begin{itemize}
 \item \textit{Input}: a set of \(n \) points \(S \) in \(\mathbb{R}^d \)
 \item \textit{Question}: can \(S \) be covered with \(k \) unit balls?
 \end{itemize}

- most discussion about decision problem
- we will consider \(L_2 \) and \(L_\infty \) metrics
- \(d \) is not a constant
k-center problem in L_2

- $k = 1$
 - linear programming in $d + 1$ dimensions
 - solvable in $O(f(d)n) = O(3^{d^2}n)$ time
- $k = 2$
 - easily solvable in $O(n^{2d+2})$ time using arrangements
 - NP-hard [Megiddo 90]
\textit{k-center problem in } L_2 \\

\begin{itemize}
 \item \textit{k = 1}
 \begin{itemize}
 \item linear programming in \(d + 1\) dimensions
 \item solvable in \(O(f(d)n) = O(3^{d^2}n)\) time
 \end{itemize}
 \item \textit{k = 2}
 \begin{itemize}
 \item easily solvable in \(O(n^{2d+2})\) time using arrangements
 \item NP-hard
 \item W[1]-hard [Megiddo 90]
 \end{itemize}
\end{itemize}
New results: 2-center problem in L_2

Theorem

2-center problem parameterized by the dimension is $W[1]$-hard.

- if there is an algorithm solving 2-center in $O(f(d)n^c)$ time
 - we can find k-cliques in graphs in $O(g(k)n^{c'})$ time
 - we can solve 3-SAT in $O(2^{o(n)})$ time
 - some hierarchy collapses
New results: 2-center problem in L_2

Theorem
2-center problem parameterized by the dimension is $W[1]$-hard.

- if there is an algorithm solving 2-center in $O(f(d)n^c)$ time
 - we can find k-cliques in graphs in $O(g(k)n^{c'})$ time
 - we can solve 3-SAT in $O(2^{o(n)})$ time
 - some hierarchy collapses
- an algorithm solving 2-center in $O(f(d)n^{100})$ time is unlikely
- an algorithm solving 2-center in $O(f(d)n^{o(d)})$ time is unlikely
k-center problem in L_∞

- $k = 1$
 - trivial $O(dn)$ time
- $k = 2$
 - solvable in $O(dn^2)$ time \[\text{[Megiddo 90]}\]
- $k = 3$
 - solvable in $O(n^{\lfloor d/3 \rfloor} \log n)$ time \[\text{[Assa, Katz 99]}\]
 - NP-hard \[\text{[Megiddo 90]}\]
k-center problem in L_∞

- $k = 1$
 - trivial $O(dn)$ time

- $k = 2$
 - solvable in $O(dn^2)$ time \[\text{[Megiddo 90]} \]

- $k = 3$
 - solvable in $O(n^{\lfloor d/3 \rfloor} \log n)$ time \[\text{[Assa, Katz 99]} \]
 - NP-hard \[\text{[Megiddo 90]} \]
 - $O(6^d \cdot dn \log(dn))$ time
\section*{k-center problem in L_∞}

\begin{itemize}
\item $k = 1$
 \begin{itemize}
 \item trivial $O(dn)$ time
 \end{itemize}
\item $k = 2$
 \begin{itemize}
 \item solvable in $O(dn^2)$ time \hfill [Megiddo 90]
 \end{itemize}
\item $k = 3$
 \begin{itemize}
 \item solvable in $O(n^{\lfloor d/3 \rfloor} \log n)$ time \hfill [Assa, Katz 99]
 \item NP-hard \hfill [Megiddo 90]
 \item $O(6^d \cdot dn \log(dn))$ time
 \end{itemize}
\item $k = 4$
 \begin{itemize}
 \item W[1]-hard
 \item an algorithm solving 4-center in $O(f(d)n^{100})$ is unlikely
 \end{itemize}
\end{itemize}
What is new?

Finer classification of k-center for unbounded dimension

- L_2
 - easy for $k = 1$
 - $W[1]$-hard for $k = 2$

- L_∞
 - easy for $k = 1, 2$
 - NP-hard, but fixed-parameter tractable for $k = 3$
 - $W[1]$-hard for $k = 4$

Other related work:

- k-center problem parameterized by k is $W[1]$-hard for $d \geq 2$ [Marx 05]
What is new?

Finer classification of k-center for unbounded dimension

- L_2
 - easy for $k = 1$
 - $W[1]$-hard for $k = 2$

- L_∞
 - easy for $k = 1, 2$
 - NP-hard, but fixed-parameter tractable for $k = 3$
 - $W[1]$-hard for $k = 4$

Other related work:

- k-center problem parameterized by k is $W[1]$-hard for $d \geq 2$
 [Marx 05]
Outline

- Introduction
- What is new?
- Ideas
 - Solving 3-center in L_∞
 - $W[1]$-hardness of 2-center in L_2
- Conclusions
Solving 3-center in L_∞ – Frame

- consider decision problem

 Input: a set of n points S in \mathbb{R}^d

 Question: can S be covered with 3 unit cubes?

- the points are denoted 1, 2, \ldots, n

 - u a generic point

- the cubes are denoted A, B, C

 - X a generic cube
Solving 3-center in L_∞ – Frame

- consider decision problem

 Input: a set of n points S in \mathbb{R}^d

 Question: can S be covered with 3 unit cubes?

- the points are denoted 1, 2, …, n
 - u a generic point

- the cubes are denoted A, B, C
 - X a generic cube

- decision \rightarrow optimization
 - easy using [Frederickson, Johnson ’84]
Solving 3-center in L_∞ – General Idea

- cube X covers point u iff $\pi_j(u) \in \pi_j(X)$ for each coordinate projection π_j

- classify possible solutions according to certain patterns
 - for each pattern
 - reduce the problem to 2-SAT
Solving 3-center in L_{∞} – Patterns

- the pattern of 3 cubes A, B, C is

 $$(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d),$$

 where
 - (L_j, M_j, R_j) a permutation of (A, B, C)
 - $\pi_j(L_j)$ left of $\pi_j(M_j)$ left of $\pi_j(R_j)$

- example with pattern $(A, B, C), (B, C, A)$ in $d = 2$
Solving 3-center in L_∞ – Patterns

- the pattern of 3 cubes A, B, C is

$$(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d),$$

where

- (L_j, M_j, R_j) a permutation of (A, B, C)
- $\pi_j(L_j)$ left of $\pi_j(M_j)$ left of $\pi_j(R_j)$

- there are 6^d possible patterns
- each pattern explored independently
- each pattern, one 2-SAT problem
Solving 3-center in L_∞ – A pattern

- consider a pattern $(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d)$
- we can fix the position of $\pi_j(L_j)$ using l_j
- idem for $\pi_j(R_j)$ using r_j
- the position of $\pi_j(M_j)$ is unclear
- Boolean variable $y_{\chi u} \equiv$ point u covered by cube X
Solving 3-center in L_∞ – A pattern

- consider a pattern $(L_1, M_1, R_1), (L_2, M_2, R_2), \ldots, (L_d, M_d, R_d)$
- we can fix the position of $\pi_j(L_j)$ using l_j
- idem for $\pi_j(R_j)$ using r_j
- the position of $\pi_j(M_j)$ is unclear
- Boolean variable $y_{Xu} \equiv$ point u covered by cube X
Solving 3-center in L_∞ – SAT

- each point u is covered
 \[y_Au \lor y_Bu \lor y_Cu \] for each point u

- incompatible pairs; for each dimension
 \[\neg y_{L_j u} \] for each point u with $\pi_j(u) > l_j + 1$
 \[\neg y_{R_j u} \] for each point u with $\pi_j(u) < r_j - 1$
 \[\neg y_{M_j u} \lor \neg y_{M_j v} \] for each points u, v with $|\pi_j(u) - \pi_j(v)| > 1$
Solving 3-center in $L_\infty – \text{SAT}$

- each point u is covered
 \[y_{Au} \lor y_{Bu} \lor y_{Cu} \] for each point u

- incompatible pairs; for each dimension
 \[\neg y_{L_j u} \] for each point u with $\pi_j(u) > l_j + 1$
 \[\neg y_{R_j u} \] for each point u with $\pi_j(u) < r_j - 1$

- for each points u, v with $|\pi_j(u) - \pi_j(v)| > 1$

- there are 3 cubes covering with the given pattern iff all clauses satisfiable simultaneously

- 3-SAT instance with $O(dn^2)$ clauses
Solving 3-center in L_∞ – 2-SAT

$y_{Au} \lor y_{Bu} \lor y_{Cu} \quad \forall$ points u

$\neg y_{L_j u} \quad \forall j, \forall$ points u with $\pi_j(u) > l_j + 1$

$\neg y_{R_j u} \quad \forall j, \forall$ points u with $\pi_j(u) < r_j - 1$

$\neg y_{M_j u} \lor \neg y_{M_j v} \quad \forall j, \forall$ points u, v with $|\pi_j(u) - \pi_j(v)| > 1$
Solving 3-center in $L_\infty - 2$-SAT

\[y_{Au} \lor y_{Bu} \lor y_{Cu} \quad \forall \text{ points } u \]
\[\neg y_{L_j u} \quad \forall j, \forall \text{ points } u \text{ with } \pi_j(u) > l_j + 1 \]
\[\neg y_{R_j u} \quad \forall j, \forall \text{ points } u \text{ with } \pi_j(u) < r_j - 1 \]
\[\neg y_{M_j u} \lor \neg y_{M_j v} \quad \forall j, \forall \text{ points } u, v \text{ with } |\pi_j(u) - \pi_j(v)| > 1 \]

For each point u either

- $y_{Au} \lor y_{Bu} \lor y_{Cu}$ reducible to 2-SAT clause, or
- point u always covered
Solving 3-center in L_∞ – SAT

$$y_{Au} \vee y_{Bu} \vee y_{Cu} \forall \text{ points } u$$

$$\neg y_{L_j u} \forall j, \forall \text{ points } u \text{ with } \pi_j(u) > l_j + 1$$

$$\neg y_{R_j u} \forall j, \forall \text{ points } u \text{ with } \pi_j(u) < r_j - 1$$

$$\neg y_{M_j u} \vee \neg y_{M_j v} \forall j, \forall \text{ points } u, v \text{ with } |\pi_j(u) - \pi_j(v)| > 1$$

- deciding for a pattern \rightarrow 2-SAT with $O(dn^2)$ clauses
- deciding for a pattern takes $O(dn^2)$ time
- can be reduced to $O(dn)$ time per pattern

- $O(dn \log n + 6^d dn)$ time for decision 3-center

- j-th coordinate
 L_j R_j

- l_j r_j
Outline

- Introduction
- What is new?
- Ideas
 - Solving 3-center in L_∞
 - $W[1]$-hardness of 2-center in L_2
- Conclusions
Hardness 2-center in L_2 – Idea

- consider the decision 2-center
- assumption: we cannot find k-cliques in $O(f(k)n^c)$
- polynomial-time reduction from clique to 2-center

\[
\text{Clique} \quad \text{reduction} \quad \text{2-center}
\]

\[
(G,k) \quad S = S(G,k) \subset \mathbb{R}g(k)
\]

where G has k-clique iff S can be 2-covered

- if 2-center solvable in $O(f(d)n^c)$ time
 \[\Rightarrow (G, k) \text{ solvable in } O(f(g(k))n^{c'}) \text{ time}\]
Hardness 2-center in L_2 – Point set

- k orthogonal planes $E_1, \ldots E_k$ and one Z axis
- point set in \mathbb{R}^{2k+1}
- in Z 2 points with $z = 2$ and $z = -2$

- in each E_i a point set like
- choose appropriate radius
- bijection k-tuples of $V(G)$ and 2-coverings of S
- add extra points killing k-tuples with non-adjacent vertices
Conclusions

Finer classification of k-center problem for unbounded dimension

- L_2
 - easy for $k = 1$
 - $W[1]$-hard for $k = 2$
 - reduction from parameterized-clique
 - lots of symmetry

- L_∞
 - easy for $k = 1, 2$
 - fixed parameter tractable for $k = 3$
 - reduction to 2-SAT
 - simple
 - $W[1]$-hard for $k = 4$