APPROXIMATION ALGORITHMS
for
SPREADING POINTS

SERGIO CABELLO
INFN, LJUBLJANA, SLOVENIA

research done at Utrecht University
THE ABSTRACT PROBLEM

- \((X, d)\) metric space

 \(S_1, \ldots, S_n \subseteq X\)

- \(t\)-distant representatives: \([\text{Fiala et al. '02}]

\[
\begin{align*}
X_1, \ldots, X_n \\
S_1, \ldots, S_n \\
\end{align*}
\]

\(\text{s.t. } d(x_i, x_j) \geq t \quad \forall i \neq j\)

- Optimization problem:

 maximize \(t\) that admits \(t\)-representatives
OUR PROBLEMS

- \((\mathbb{R}^2, L_\infty)\)
 \(S_1, \ldots, S_n\) disks (squares in \(L_\infty\))
 Choose \(p_i \in S_i\) maximizing the distance of the closest pair.

- \((\mathbb{R}^2, L_2)\)
 \(S_1, \ldots, S_n\) (congruent) disks
 Choose \(p_i \in S_i\) maximizing the distance of c.p.
PREVIOUS/RELATED WORK

- Fiala et. al mo
- Baur & Fekete mo \implies NP-hard to get PTAS

- Baur & Fekete: Choose K points inside a polygonal region maximizing the distance of c.p. NP-hard to get a PTAS. \(\frac{3}{2} \)-approximation in \(L_\infty \)

- Packing problems - Map labelling problems.
Our Results

<table>
<thead>
<tr>
<th>Space</th>
<th>Regions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathbb{R}^2, L_\infty))</td>
<td>disks</td>
<td>2-approximation, (O(n \sqrt{n} \log^2 n)) *</td>
</tr>
<tr>
<td>((\mathbb{R}^2, L_2))</td>
<td>congruent disks</td>
<td>(\lceil \frac{8}{3} \rceil)-approximation, (O(n^2))</td>
</tr>
</tbody>
</table>

* today's aim
OUTLINE

- The abstract problem / Our problem
- Previous / Related work
- Our results
 - Approximate placement algorithm
 - Efficiency of approximate placement
 - Decision no Optimization

\[L_\infty \times 2\text{-approximation} \]
PLACEMENT ALGORITHM (t)

Idea: Try to place points at $t \mathbb{Z}^2$.

$\mathbb{Z}^2 \setminus \text{waste}$

Disks 5

$G(t)$

Matching

\begin{align*}
(4, 2) & \rightarrow (4, 3) \\
(4, 3) & \rightarrow (4, 2) \\
(4, 4) & \rightarrow (4, 4) \\
(2, 4) & \rightarrow (4, 4) \\
(2, 5) & \rightarrow (2, 5)
\end{align*}
Placement Algorithm (t)

- \(\text{WASTE} := \emptyset \);
- \(\text{if } S_e \cap n(t, Z^2) = \emptyset, \text{ two cases} \)

\[
G(t) = \left(\{ S_1, \ldots, S_n \} \cup (t, Z^2 \setminus \text{WASTE}), \{ (p, S_i) \mid p \in S_i \} \right)
\]

- matching in \(G(t) \)

\(\rightarrow \) Placement.
Placement Algorithm \((t)\)

Let \(t^*\) be the optimal solution.

\underline{Lemma}: If \(2t \leq t^*\) then:

- \(G(t)\) has a matching so we get placement;
- c.p. of placement is \(t\) apart.

We may have a huge graph \(G(t)\).\[\checkmark\]

\(\rightarrow\) Modify algorithm
OUTLINE

✓ The abstract problem / Our problem
✓ Previous/Related work
✓ Our results
✓ Approximate placement algorithm
 • Efficiency of approximate placement
 • Decision no Optimization

\[L_\infty \quad 2\text{-approximation} \]
EFFICIENCY Placement (t)

\[\text{G}(t) \text{ looks like } \begin{array}{c}
\square \\
\vdots \\
\square \end{array} \begin{array}{c}
t \cdot \mathbb{Z}^2 \\
\vdots \\
\square \end{array} \begin{array}{c}
n \text{ disks} \\
\vdots \\
\square \end{array} \begin{array}{c}
\text{Many points} \\
\vdots \\
\square \end{array} \]

\(\uparrow\) Each disk needs degree \(\leq n\)
\(\uparrow\) For each disk, take \(5n\) points \((|\text{WASTE}| \leq 4n)\)
\(\uparrow\) \(\text{G}(t)\) has \(n + O(n^2)\) vertices.

Lemma: Placement \(\in P\).
Efficiency Placement (t)

Lemma: Placement (t) can be done in $O(n\sqrt{n \log n})$ time.

Proof: Two steps:
1. Considering $O(n\sqrt{n})$ points in total
2. Geometry helps for matching T disks, P points $\implies O(P \log P + \sqrt{T} \cdot T \cdot \log P)$

$\implies O(n\sqrt{n \log n})$ time
OUTLINE

- The abstract problem / Our problem
- Previous/Related work
- Our results
- Approximate placement algorithm
 - Efficiency of approximate placement
 - Decision no Optimization
 - L_∞
 - $O(2)$-approximation
DECISION OPTIMIZATION

Lemma: If $2t \leq t^*$, Placement (t) ✓

Corollaries: How to prove Placement(t) is Z-approximated

- If Placement(t) ✓ and Placement(t) X after translation $\Rightarrow t > \frac{t^*}{2}$
- If $t > t'$, Placement(t) ✓, Placement(t') X $\Rightarrow t > \frac{t^*}{2}$
- If Placement(t) ✓ and Placement$(t + \varepsilon)$ X for infinitesimal $\varepsilon > 0$ $\Rightarrow t \geq \frac{t^*}{2}$
DECISION OPTIMIZATION

Main idea: binary search at 3 levels

![Diagram](image)

Invariant: \(t_1 < t_2 \) s.t. \(\text{Placement}(t_1) \checkmark \)

Objective: \(t_1 < t_2 \) like above and \(G(t_1 + \varepsilon) \approx G(t_2) \)

\[\Rightarrow t_1 \text{ is a } 2\text{-approximation} \]
Theorem: In (\mathbb{R}^2, L_∞), regions are disks, we have a 2-approximation in $O(n\sqrt{n} \log^2 n)$.

Proof: $3 \times O(\log n) \times O(n\sqrt{n} \log n)$ time we find $t_1 < t_2$ s.t.

$\text{Placement}(t_1) \checkmark$

$\text{Placement}(t_2) \times$

$G(t_1 + \varepsilon) \preceq G(t_2)$
OUTLINE

• The abstract problem / Our problem
• Previous/Related work
• Our results
• Approximate placement algorithm \(L_\infty \) 2-approximation
• Efficiency of approximate placement
• Decision no Optimization
OPEN PROBLEM

• If S_i's disjoint no CENTERS is 2-approximation

Improve it?

Get a T-approximation with $T < 2$ for disjoint disks.