Home > News > Matija Vidmar: Another characterization of homogeneous Poisson processes

Matija Vidmar: Another characterization of homogeneous Poisson processes

Date: 28. 11. 2016
Source: Seminar for probability, statistics, and financial mathematics
Četrtek, 1. decembra 2016, ob 14:30 v predavalnici 2.03 na FMF, Jadranska 21, Ljubljana

V četrtek, 1. decembra 2016, ob 14:30 bo v predavalnici 2.03 Fakultete za matematiko in fiziko Univerze v Ljubljani na Jadranski ulici 21 v Ljubljani potekalo predavanje Matije Vidmarja z naslovom Another characterization of homogeneous Poisson processes

Abstract: For a general renewal process N (with delay and defect) the ndependence of the first renewal epochs of the marked processes got from $N$ by Bernoulli 0/1 thinning is characterized. By way of corollary we obtain a related characterization of homogeneous Poisson processes.