Home > News > Rafael B. Andrist: The density property for Gizatullin surfaces

Rafael B. Andrist: The density property for Gizatullin surfaces

Date: 30. 3. 2017
Source: Complex analysis seminar
Torek, 04.04.2017 ob 12:30, soba 3.06 na Jadranski 21
V torek, 4. aprila ob 12. uri in 30 minut, bo v okviru seminarja za kompleksno analizo predaval dr. Rafael B. Andrist z Univerze v Wuppertalu, Nemčija.

Title: The density property for Gizatullin surfaces.

Abstract: The density property is a way to express that a Stein manifold has a huge group of holomorphic automorphisms; in particular, the automorphisms act transitively in this case. A normal complex-affine algebraic surface such that its group of algebraic automorphisms acts quasi-transitive, is called a Gizatullin surface. Hence, Gizatullin surfaces are natural candidates to consider when looking for complex surfaces with the density property. I will show that a large subclass of smooth Gizatullin surfaces enjoys the density property, leaving the question open only for some pathological cases.

Seminar bo v predavalnici 3.06 na Jadranski 21. Vljudno vabljeni!

Vodji seminarja

Josip Globevnik in Franc Forstnerič