Home > News > Leandro Arosio: Dynamics of transcendental Hénon maps

Leandro Arosio: Dynamics of transcendental Hénon maps

Date: 23. 3. 2018
Source: Complex analysis seminar
Torek, 27.03.2018 ob 12:30, soba 3.06 na Jadranski 21
V torek, 27. marca ob 12. uri in 30 minut, bo v okviru seminarja za kompleksno analizo predaval dr. Leandro Arosio z Univerze v Rimu II - Tor Vergata, Italija.

Title: Dynamics of transcendental Hénon maps.

Abstract: The dynamics of a polynomial in the complex plane is a classical topic studied already at the beginning of the 20th century by Fatou and Julia. The complex plane is partitioned in two natural invariant sets: a compact set called the Julia set, with (usually) fractal structure and chaotic behaviour, and the Fatou set, where dynamics has no sensitive dependence on initial conditions. The dynamics of a transcendental map was first studied by Baker fifty years ago, and shows striking differences with the polynomial case: for example, there are wandering Fatou components. Moving to C^2, an analogue of polynomial dynamics is given by Hénon maps, polynomial automorphisms with interesting dynamics. In this talk I will introduce a natural generalisation of transcendental dynamics to C^2, and show how to construct wandering domains for such maps.

Seminar bo v predavalnici 3.06 na Jadranski 21. Vljudno vabljeni!

V četrtek, 29. marca, pa bo v okviru seminarja za kompleksno analizo predaval še dr. Han Peters z Univerze v Amsterdamu. Vabilo sledi! 

Vodji seminarja

Josip Globevnik in Franc Forstnerič