Bruno Bertini: Rényi Entropies and Charge Moments from Space-Time Duality
Rényi entropies are conceptually valuable and experimentally relevant generalisations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out-of-equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system's dynamics, and its characterisation is a key objective of current research. In the talk I will show that the slope of Rényi entropies can be determined by means of a spacetime duality transformation. I will argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement can be expressed as an equilibrium quantity. I will use this observation to find an explicit formula for the slope of Rényi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. I will then show that the duality approach can be generalised to the computation of full-counting statistics and symmetry resolved entanglement.
- Bruno Bertini, University of Nottingham, United Kingdom