Optimal stopping and American options
Chapter 4: Price functions. Numerical methods

Damien Lamberton
Université Paris-Est

Summer School on Financial Mathematics
Ljubiana, September 2009
Optimal stopping and stochastic differential equations

Outline

Optimal stopping and stochastic differential equations
Outline

Optimal stopping and stochastic differential equations

Call and put prices
Outline

Optimal stopping and stochastic differential equations

Call and put prices

Variational inequality
Outline

Optimal stopping and stochastic differential equations

Call and put prices

Variational inequality

Numerical methods
Consider a stochastic differential equation

\[dX_t = b(t, X_t)dt + \sigma(t, X_t).dW_t, \]

(1)

where \(W = (W_t^{1}, \ldots, W_t^{l})_{0 \leq t \leq T} \) is a standard \(l \)-dimensional Brownian motion with respect to a filtration \(\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T} \), defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P}) \), \(b \) is a continuous function from \([0, T] \times \mathbb{R}^d \) into \(\mathbb{R}^d \), \(\sigma \) a continuous function from \([0, T] \times \mathbb{R}^d \) into the space \(\mathcal{M}_{d,l} \) of real matrices with \(d \) rows and \(l \) columns. We assume that the functions \(b \) and \(\sigma \) satisfy a Lipschitz condition with respect to \(x \), which is uniform over time.
We then have existence and uniqueness of a strong solution for equation (1). For \((t, x) \in [0, T] \times \mathbb{R}^d\), let \((X_{s}^{t, x})_{t \leq s \leq T}\) be the unique solution of (1) on the time interval \([t, T]\), such that \(X_{t}^{t, x} = x\).
We then have existence and uniqueness of a strong solution for equation (1). For \((t, x) \in [0, T] \times \mathbb{R}^d\), let \((X_{s}^{t,x})_{t \leq s \leq T}\) be the unique solution of (1) on the time interval \([t, T]\), such that \(X_{t}^{t,x} = x\).

Let \(r : [0, T] \times \mathbb{R}^d \to \mathbb{R}\) be a continuous nonnegative function. We are interested in the optimal stopping problem with reward process

\[
Z_t = e^{-\int_0^t r(s,X_s)ds}f(t, X_t),
\]

where \(X\) is a solution of (1) (with \(X_0\) deterministic), and \(f : [0, T] \times \mathbb{R}^d \to \mathbb{R}\) a continuous nonnegative function, with \(f(t, x) \leq C(1 + |x|^k)\) for every \((t, x) \in [0, T] \times \mathbb{R}^d\), where \(C\) and \(k\) are positive constants.
Theorem

The function F, defined on $[0, T] \times \mathbb{R}^d$ by

$$F(t, x) = \sup_{\tau \in \mathcal{I}_{t,T}} \mathbb{E} \left(\beta_{T}^{t,x} f(\tau, X_{T}^{t,x}) \right),$$

with $\beta_{s}^{t,x} = \exp(-\int_t^s r(\theta, X_{\theta}^{t,x}) d\theta)$ is continuous and if X is a solution of (1) (with X_0 deterministic), the process

$$(\beta_t F(t, X_t))_{0 \leq t \leq T},$$

where $\beta_t = \exp(-\int_0^t r(s, X_s) ds)$, is the Snell envelope of

$$Z = (\beta_t f(t, X_t))_{0 \leq t \leq T}.$$
The function F, defined on $[0, T] \times \mathbb{R}^d$ by

$$F(t, x) = \sup_{\tau \in I_{t,T}} \mathbb{E}\left(\beta^t_{\tau} f(\tau, X^t_{\tau})\right),$$

with $\beta^t_{s} = \exp\left(-\int_s^t r(\theta, X^t_{\theta}) d\theta\right)$ is continuous and if X is a solution of (1) (with X_0 deterministic), the process

$$(\beta_t F(t, X_t))_{0 \leq t \leq T},$$

where $\beta_t = \exp(-\int_0^t r(s, X_s) ds)$, is the Snell envelope of

$$Z = (\beta_t f(t, X_t))_{0 \leq t \leq T}.$$

Moreover, if the functions r, b and σ do not depend on time, we have

$$F(t, x) = \sup_{\tau \in I_{0,T-t}} \mathbb{E}\left(\beta^0_{\tau} f(t + \tau, X^0_{\tau})\right).$$
Call and put prices in Black-Scholes

In the Black-Scholes model, there is just one risky asset, with price S_t at time t and coefficients do not depend on time. Under the risk neutral probability measure (denoted by \mathbb{P}), we have

$$dS_t = S_t [(r - \delta)dt + \sigma dW_t],$$

where $(W_t)_{0 \leq t \leq T}$ is standard Brownian motion.
Call and put prices in Black-Scholes

In the Black-Scholes model, there is just one risky asset, with price S_t at time t and coefficients do not depend on time. Under the risk neutral probability measure (denoted by \mathbb{P}), we have

$$dS_t = S_t [(r - \delta)dt + \sigma dW_t],$$

where $(W_t)_{0 \leq t \leq T}$ is standard Brownian motion. We have

$$S^{0,x}_t = xe^{(r-\delta-(\sigma^2/2))t+\sigma W_t}.$$
Call and put prices in Black-Scholes

In the Black-Scholes model, there is just one risky asset, with price S_t at time t and coefficients do not depend on time. Under the risk neutral probability measure (denoted by \mathbb{P}), we have

$$dS_t = S_t \left[(r - \delta)dt + \sigma dW_t\right],$$

where $(W_t)_{0 \leq t \leq T}$ is standard Brownian motion. We have

$$S_{t}^{0,x} = xe^{(r-\delta-(\sigma^2/2))t + \sigma W_t}.$$

Proposition

Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a continuous function with polynomial growth. The value at time t of an American option with payoff process $Z_t = \psi(S_t)$ is given by $V(t, S_t)$, where

$$V(t, x) = \sup_{\tau \in \mathcal{T}_0, T-t} \mathbb{E}e^{-r\tau} \psi \left(xe^{(r-\delta-(\sigma^2/2))\tau + \sigma W_\tau}\right).$$
Call-put symmetry

Let

\[C(t, x; K, r, \delta) = \sup_{\tau \in T_0, T-t} \mathbb{E} e^{-r\tau} \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau} - K \right) + \]

and

\[P(t, x; K, r, \delta) = \sup_{\tau \in T_0, T-t} \mathbb{E} e^{-r\tau} \left(K - x e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau} \right) + . \]

Proposition

We have

\[C(t, x; K, r, \delta) = P(t, K; x, \delta, r) = x P(t, K/x; 1, \delta, r). \]
Proof

For \(\tau \in I_0, T-t \), let

\[
C^\tau(t, x; K, r, \delta) = \mathbb{E} e^{-r\tau} \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau+\sigma W_\tau} - K \right) +
\]

We have, with the notation \(\hat{W}_t = W_t - \sigma t \),

\[
C^\tau(t, x; K, r, \delta) = \mathbb{E} e^{-\delta \tau} e^{\sigma \hat{W}_\tau-(\sigma^2/2)\tau} \left(x - K e^{(\delta-r+\frac{\sigma^2}{2})\tau-\sigma \hat{W}_\tau} \right) +
\]

\[
= \mathbb{E} e^{-\delta \tau} e^{\sigma \hat{W}_\tau-(\sigma^2/2)\tau} \left(x - K e^{(\delta-r-\frac{\sigma^2}{2})\tau-\sigma \hat{W}_\tau} \right) +,
\]

where the last equality comes from the fact that \((e^{\sigma W_t-(\sigma^2/2)t})_{t\geq 0} \) is a martingale.
Therefore,

\[C^\tau(t, x; K, r, \delta) = \hat{\mathbb{E}}e^{-\delta \tau} \left(x - Ke^{(\delta - r - \frac{\sigma^2}{2})\tau - \sigma \hat{W}_\tau} \right) + , \]

where the probability \(\hat{\mathbb{P}} \) is defined by

\[d\hat{\mathbb{P}}/d\mathbb{P} = e^{\sigma \hat{W}_T - (\sigma^2/2)T}. \]
Therefore,

\[C^\tau(t, x; K, r, \delta) = \hat{\mathbb{E}} e^{-\delta \tau} \left(x - Ke^{(\delta - r - \frac{\sigma^2}{2})\tau - \sigma \hat{W}_\tau} \right) +, \]

where the probability \(\hat{\mathbb{P}} \) is defined by \(\frac{d\hat{\mathbb{P}}}{d\mathbb{P}} = e^{\sigma \hat{W}_T - (\sigma^2/2)T} \).

Under probability \(\hat{\mathbb{P}} \), the process \((\hat{W}_t)_{0 \leq t \leq T} \) is a standard Brownian motion, as well as, by symmetry, the process \((-\hat{W}_t)_{0 \leq t \leq T} \).

Hence,

\[C(t, x; K, r, \delta) = P(t, K; x, \delta, r). \]
The put price

\[P(t, x) = \sup_{\tau \in [0, T - t]} \mathbb{E} e^{-r \tau} \psi \left(xe^{(r - \delta - \frac{\sigma^2}{2})\tau + \sigma W_\tau} \right), \]

with

\[\psi(x) = (K - x)_+. \]
The put price

\[P(t, x) = \sup_{\tau \in [0, T-t]} \mathbb{E} e^{-r\tau} \psi \left(x e^{(r-\delta - \frac{\sigma^2}{2})\tau + \sigma W_\tau} \right), \]

with

\[\psi(x) = (K - x)_+. \]

We assume \(r > 0 \) since, if \(r = 0 \), the American put is equivalent to the European put.
The put price

\[P(t, x) = \sup_{\tau \in [0, T] : \tau - t} \mathbb{E} e^{-r\tau} \psi \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau} \right), \]

with

\[\psi(x) = (K - x)_+. \]

We assume \(r > 0 \) since, if \(r = 0 \), the American put is equivalent to the European put.
For every \(x \in [0, +\infty) \), \(t \mapsto P(t, x) \) is a nonincreasing function.
The put price

\[P(t, x) = \sup_{\tau \in T_0, T-t} \mathbb{E} e^{-r\tau} \psi \left(x e^{(r-\delta - \frac{\sigma^2}{2})\tau + \sigma W_\tau} \right), \]

with

\[\psi(x) = (K - x)_+. \]

We assume \(r > 0 \) since, if \(r = 0 \), the American put is equivalent to the European put.

For every \(x \in [0, +\infty) \), \(t \mapsto P(t, x) \) is a nonincreasing function.

For every \(t \in [0, T] \), \(x \mapsto P(t, x) \) is a nonincreasing convex function.
The put price

\[P(t, x) = \sup_{\tau \in \mathcal{T}_{0, T-t}} \mathbb{E} e^{-r \tau} \psi \left(xe^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_{\tau}} \right), \]

with

\[\psi(x) = (K - x)_+. \]

We assume \(r > 0 \) since, if \(r = 0 \), the American put is equivalent to the European put.

For every \(x \in [0, +\infty) \), \(t \mapsto P(t, x) \) is a nonincreasing function.

For every \(t \in [0, T] \), \(x \mapsto P(t, x) \) is a nonincreasing convex function.

For every \((t, x) \in [0, T] \times [0, +\infty) \), \(P(t, x) \geq \psi(x) = P(T, x) \).
Proposition

1. For every \((t, x) \in [0, T] \times [0, +\infty)\), we have

\[
P(t, x) = \sup_{\tau \in \mathcal{T}_{0, 1}} \mathbb{E} e^{-r\tau(T-t)} \psi \left(xe^{(r-\delta-\frac{\sigma^2}{2})\tau(T-t) + \sigma \sqrt{T-t} W_\tau} \right).
\]

2. For every \(t \in [0, T]\), and for \(x, y \geq 0\),

\[
|P(t, x) - P(t, y)| \leq |x - y|.
\]

3. There exits a positive constant \(C\) such that, for \(x \in [0, +\infty[\), and for \(t, s \in [0, T]\),

\[
|P(t, x) - P(s, x)| \leq C \left| \sqrt{T-t} - \sqrt{T-s} \right|.
\]
Proof

The first equality is a consequence of the scaling property of Brownian motion. Indeed, let $\tilde{F}_s = F(T-t)_s$. We have $\tau \in T_0, T-t$ if and only if $\tau/(T-t) \in \tilde{T}_{0,1}$, where $\tilde{T}_{0,1}$ is the set of all stopping times with respect to the filtration $(\tilde{F}_s)_{0 \leq s \leq 1}$, with values in $[0, 1]$. Therefore,

$$P(t, x) = \sup_{\tau \in \tilde{T}_{0,1}} \mathbb{E} e^{-r\tau(T-t)} \psi \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau(T-t)+\sigma W_{\tau(T-t)}} \right)$$

Now, observe that $(\tilde{F}_s)_{0 \leq s \leq 1}$ is the (completion of) the natural filtration of the process $(W_s(T-t))_{0 \leq s \leq 1}$ and that $(W_s(T-t))_{0 \leq s \leq 1}$ has the same law as $(\sqrt{T-t} W_s)_{0 \leq s \leq 1}$.
For the second statement, note that, for \(\tau \in \mathcal{T}_0, T-t \),

\[
\left| \psi \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau} \right) - \psi \left(y e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau} \right) \right| \leq |x - y| e^{(r-\delta-\frac{\sigma^2}{2})\tau + \sigma W_\tau},
\]

where we have used the Lipschitz property of \(\psi \). The desired inequality can now be derived from \(\delta \geq 0 \) and \(\mathbb{E} e^{\sigma W_\tau - \frac{\sigma^2 \tau}{2}} = 1 \).

The third part of the proposition can be deduced in a similar way from (2).
Remark

It follows from the Lipschitz properties of P, as given by Proposition 3, that the first order partial derivatives of P (in the sense of distributions) are locally bounded on the open set $(0, T) \times (0, +\infty)$. More precisely, we have

$$
\|\partial P/\partial x\|_{L^\infty([0, T] \times [0, +\infty))} \leq 1
$$

and, for $t \in [0, T[$,

$$
\|\partial P/\partial t(t, \cdot)\|_{L^\infty([0, +\infty))} \leq \frac{C}{\sqrt{T-t}}.
$$
Introduce the so-called *Dynkin operator* \mathcal{D}, associated with the SDE:

$$
\mathcal{D} = \frac{\partial}{\partial t} + \frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} a_{ij}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{d} b_{i}(t, x) \frac{\partial}{\partial x_{i}},
$$

where the matrix $a(t, x) = (a_{ij}(t, x))_{1 \leq i, j \leq d}$ is the product of the matrix $\sigma(t, x)$ with its transpose:

$$
a(t, x) = \sigma(t, x) \sigma^{*}(t, x).
$$
If X is a solution of the SDE on the interval $[0, T]$ and if
\[\beta_t = \exp \left(- \int_0^t r(s, X_s) \, ds \right), \]
we have, for a function F of class $C^{1,2}$ on $[0, T] \times \mathbb{R}^d$,

\[\beta_t F(t, X_t) = F(0, X_0) + \int_0^t \beta_s \nabla F(s, X_s) \cdot \sigma(s, X_s) \, dW_s \]
\[+ \int_0^t \beta_s (\mathcal{D} F - rF)(s, X_s) \, ds, \]

with the notation
\[\nabla F(s, X_s) \cdot \sigma(s, X_s) \, dW_s = \sum_{i=1}^d \frac{\partial F}{\partial x_i}(s, X_s) \sum_{j=1}^d \sigma_{ij}(s, X_s) dW_s^j. \]
For the process \((\beta_t F(t, X_t))_{0 \leq t \leq T}\) to be the Snell envelope of the discounted payoff process \((\beta_t f(t, X_t))_{0 \leq t \leq T}\), we need

\[
D F - r F \leq 0
\]

\[
F \geq f
\]

\[
F(T, \cdot) = f(T, \cdot)
\]

\[
D F - r F = 0 \text{ on the set } \{F > f\}
\]

In summary

\[
\max(D F - r F, f - F) = 0
\]

\[
F(T, \cdot) = f(T, \cdot)
\]
For the process \((\beta_t F(t, X_t))_{0 \leq t \leq T}\) to be the Snell envelope of the discounted payoff process \((\beta_t f(t, X_t))_{0 \leq t \leq T}\), we need

\[\mathcal{D}F - rF \leq 0,\]
For the process $\left(\beta_t F(t, X_t) \right)_{0 \leq t \leq T}$ to be the Snell envelope of the discounted payoff process $\left(\beta_t f(t, X_t) \right)_{0 \leq t \leq T}$, we need

$$\mathcal{D}F - rF \leq 0,$$

$$F \geq f, \quad F(T, \cdot) = f(T, \cdot).$$
For the process \((\beta_t F(t, X_t))_{0 \leq t \leq T}\) to be the Snell envelope of the discounted payoff process \((\beta_t f(t, X_t))_{0 \leq t \leq T}\), we need

\[
\mathcal{D}F - rF \leq 0,
\]

\[
F \geq f, \quad F(T, \cdot) = f(T, \cdot)
\]

\[
\mathcal{D}F - rF = 0 \quad \text{on the set} \quad \{F > f\}.
\]
For the process \((\beta_t F(t, X_t))_{0 \leq t \leq T}\) to be the Snell envelope of the discounted payoff process \((\beta_t f(t, X_t))_{0 \leq t \leq T}\), we need

\[\mathcal{D}F - rF \leq 0,\]

\[F \geq f, \quad F(T, \cdot) = f(T, \cdot)\]

\[\mathcal{D}F - rF = 0 \quad \text{on the set} \quad \{F > f\}\]

In summary

\[
\begin{cases}
\max (\mathcal{D}F - rF, f - F) = 0 \\
F(T, \cdot) = f(T, \cdot).
\end{cases}
\]
The American put price

In the Black-Scholes model. If we set $X_t = \log(S_t)$, we have

$$dX_t = \mu dt + \sigma dW_t,$$

(3)

with $\mu = r - \delta - \frac{\sigma^2}{2}$. Denote by X^x the solution of (3) with $X_0^x = x$, so that $X^x_t = x + \mu t + \sigma W_t$. The Dynkin operator is given by

$$\mathcal{D} = \frac{\partial}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2}{\partial x^2} + \mu \frac{\partial}{\partial x}.$$

American put price: $P(t, x) = F(t, \log x)$, where the function F is defined by

$$F(t, x) = \sup_{\tau \in \mathcal{T}_0, \tau - t} \mathbb{E} e^{-r\tau} f(X^x_\tau), \text{ with } f(x) = (K - e^x)_+.$$
Theorem

1. The partial derivatives \(\partial F / \partial x \), \(\partial F / \partial t \) and \(\partial^2 F / \partial x^2 \) are locally bounded. More precisely, \(\partial F / \partial x \) is uniformly bounded on and there exists \(C_1 > 0 \) such that

\[
\forall t \in [0, T), \quad \left\| \frac{\partial F}{\partial t} (t, \cdot) \right\|_{L^\infty(\mathbb{R})} + \left\| \frac{\partial^2 F}{\partial x^2} (t, \cdot) \right\|_{L^\infty(\mathbb{R})} \leq \frac{C_1}{\sqrt{T - t}}.
\]

2. The function \(F \) satisfies the variational inequality

\[
\max (\mathcal{D}F(t, x) - r(t, x)F, f(x) - F(t, x)) = 0,
\]

\(dtdx \) a.e. in \((0, T) \times \mathbb{R}\), with terminal condition \(F(T, \cdot) = f \).

Corollary

The function \(\partial F / \partial x \) is continuous on the set \([0, T) \times \mathbb{R}\).
Perpetual put

\[P_\infty(x) = \sup_{\tau \in \mathcal{I}_0,+\infty} \mathbb{E}e^{-r\tau} \psi \left(x e^{(r-\delta-\frac{\sigma^2}{2})\tau+\sigma W_\tau} \right), \]

with \(\psi(x) = (K - x)_+ \) and \(\mathcal{I}_0,+\infty \) the set of all finite stopping times. We have

\[P_\infty(x) = \begin{cases}
 K - x, & \text{if } x \leq x^* \\
 (K - x^*)(x/x^*)^{-\gamma}, & \text{if } x > x^*, \end{cases} \]

with \(x^* = K \gamma/(1 + \gamma) \) and

\[\gamma = \frac{1}{\sigma^2} \left[\left(r - \delta - \frac{\sigma^2}{2} \right) + \sqrt{\left(r - \delta - \frac{\sigma^2}{2} \right)^2 + 2r\sigma^2} \right]. \]
Exercise boundary

For $t \in [0, T)$, let

$$s^*(t) = \inf\{x \in [0, +\infty[\mid P(t, x) > \psi(x) = (K - x)_+\}.$$

The number $s^*(t)$ is called critical price at time t. We have

$$x^* \leq s^*(t) < K, \quad t \in [0, T).$$

We deduce from the convexity of $x \mapsto P(t, x)$ that

$$\forall x \leq s^*(t), \quad P(t, x) = K - x$$

and

$$\forall x > s^*(t), \quad P(t, x) > (K - x)_+.$$
By translating the variational inequality satisfied by
\(F(t, x) = P(t, e^x) \) into an inequality satisfied by \(P \), we get,
\[dtdx\text{-almost everywhere on } (0, T) \times (0, +\infty), \]

\[\mathcal{D}P(t, x) = (\delta x - rK)1_{\{x \leq s^*(t)\}}, \]

where
\[\mathcal{D} = \frac{\partial}{\partial t} + \frac{\sigma^2}{2}x^2\frac{\partial^2}{\partial x^2} + (r - \delta)x\frac{\partial}{\partial x} - r. \]

Using the generalized Ito formula, we get
\[e^{-rt}P(t, S_t) = P(0, S_0) + \int_0^t e^{-ru}\sigma S_u \frac{\partial P}{\partial x}(u, S_u) dW_u \]
\[+ \int_0^t e^{-ru}(\delta S_u - rK)1_{\{S_u \leq s^*(u)\}} du. \]
Observe that the amount of risky asset in the minimal hedging strategy is given by $H_t = (\partial P/\partial x)(t, S_t)$.
Observe that the amount of risky asset in the minimal hedging strategy is given by $H_t = (\partial P/\partial x)(t, S_t)$.

Let $t \to T$ to obtain

$$e^{-rT}(K - S_T) = P(0, S_0) + \int_0^T e^{-ru} \sigma S_u \frac{\partial P}{\partial x}(u, S_u) dW_u$$

$$+ \int_0^T e^{-ru}(\delta S_u - rK)1_{\{S_u \leq s^*(u)\}} du$$
Observe that the amount of risky asset in the minimal hedging strategy is given by $H_t = \left(\partial P / \partial x \right)(t, S_t)$. Let $t \to T$ to obtain

$$
e^{-rT}(K - S_T) = P(0, S_0) + \int_0^T e^{-ru} \sigma S_u \frac{\partial P}{\partial x}(u, S_u) dW_u$$

$$+ \int_0^T e^{-ru}(\delta S_u - rK)1\{S_u \leq s^*(u)\} du$$

Hence

$$P_e(0, S_0) = P(0, S_0) + \int_0^T e^{-ru} \mathbb{E} \left((\delta S_u - rK)1\{S_u \leq s^*(u)\} \right) du,$$

where P_e is the function price of the European put.
Early exercise premium

\[P(t, x) = P_e(t, x) \]
\[+ \int_0^{T-t} \left(rK e^{-ru} N(d_1(x, t, u)) - \delta x e^{-\delta u} N(d_2(x, t, u)) \right) du, \]

where \(N \) is the standard normal cumulative distribution function,

\[d_1(x, t, u) = \frac{\log(s^*(t + u)/x) - (r - \delta - \frac{\sigma^2}{2})u}{\sigma \sqrt{u}}, \]

\[d_2(x, t, u) = \frac{\log(s^*(t + u)/x) - (r - \delta + \frac{\sigma^2}{2})u}{\sigma \sqrt{u}}. \]
Numerical methods

Many numerical methods have been implemented in the Premia software, which can be downloaded from the web-site http://www-rocq.inria.fr/mathfi/Premia/index.html

For PDE methods, see the forthcoming Encyclopedia of Quantitative Finance, Wiley, the recent book by Achdou and Pironneau, a forthcoming book by C. Schwab et al.

Integral equations for the free boundary (G. Peskir, Chen-Chadam).

For quantization methods, see http://www.quantification.finance-mathematique.com/

Monte-Carlo methods: duality (Rogers, Haugh-Kogan), Malliavin calculus, least squares regression (Longstaff-Schwartz...), Glasserman's book.
Numerical methods

Many numerical methods have been implemented in the *Premia* software, which can be downloaded from the web-site

http://www-rocq.inria.fr/mathfi/Premia/index.html
Numerical methods

- Many numerical methods have been implemented in the *Premia* software, which can be downloaded from the web-site http://www-rocq.inria.fr/mathfi/Premia/index.html

- For PDE methods, see the forthcoming Encyclopedia of Quantitative Finance, Wiley, the recent book by Achdou and Pironneau, a forthcoming book by C. Schwab et al.
Numerical methods

- Many numerical methods have been implemented in the *Premia* software, which can be downloaded from the web-site http://www-rocq.inria.fr/mathfi/Premia/index.html.
- For PDE methods, see the forthcoming Encyclopedia of Quantitative Finance, Wiley, the recent book by Achdou and Pironneau, a forthcoming book by C. Schwab et al.
- Integral equations for the free boundary (G. Peskir, Chen-Chadam).
Numerical methods

- Many numerical methods have been implemented in the *Premia* software, which can be downloaded from the web-site http://www-rocq.inria.fr/mathfi/Premia/index.html

- For PDE methods, see the forthcoming Encyclopedia of Quantitative Finance, Wiley, the recent book by Achdou and Pironneau, a forthcoming book by C. Schwab et al.

- Integral equations for the free boundary (G. Peskir, Chen-Chadam).

- For quantization methods, see http://www.quantification.finance-mathematique.com/
Numerical methods

- Many numerical methods have been implemented in the *Premia* software, which can be downloaded from the web-site http://www-rocq.inria.fr/mathfi/Premia/index.html
- For PDE methods, see the forthcoming Encyclopedia of Quantitative Finance, Wiley, the recent book by Achdou and Pironneau, a forthcoming book by C. Schwab et al.
- Integral equations for the free boundary (G. Peskir, Chen-Chadam).
- For quantization methods, see http://www.quantification.finance-mathematique.com/
- Monte-Carlo methods: duality (Rogers, Haugh-Kogan), Malliavin calculus, least squares regression (Longstaff-Schwartz...), Glasserman’s book.