Preskoči na glavno vsebino

Peter R Turner: Gradual and tapered Overflow and Underflow: Overcoming the logarithmic distribution of numbers

Datum objave: 20. 9. 2010
Seminar za temelje matematike in teoretično računalništvo
Sreda 22.9.2010 od 10h do 11h, soba 3.06 na Jadranski 21

Seminar za osnove se bo v sredo 22.9.2010 od 10h do 11h sestal skupaj s seminarjem za numerično matematiko. Predaval bo profesor P. Turner iz Clarkson University, ZDA, z naslovom

Gradual and tapered Overflow and Underflow: Overcoming the logarithmic distribution of numbers

Povzetek: An important but often not fully appreciated fact is that numbers as they arise in computations are distributed according to a logarithmic law. This observation goes back (at least) to a paper of Benford in 1937. One of the consequences is that in the decimal system the leading significant digits of numbers will be 1 approximately 30% of the time. This fact, for which I will offer background and justification, has serious effects on the reliability of computations. Some solutions to these involving alternatives to the standard floating point arithmetic system will be presented. 

Vljudno vabljeni! Še enkrat opozarjam na nestandardni čas in kraj seminarja.