Prof. dr. Hrvoje Buljan: Ultracold atomic gases as quantum abacus beads
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prof. dr. Hrvoje Buljan
Oddelek za fiziko, Univerza v Zagrebu, Zagreb, Hrvaška
Ultrahladni atomarni plini kot kvantne abakove kroglice
Atomarne pline lahko ohladimo do zelo nizkih temperatur (nekaj nanokelvinov na absolutno ničlo), kjer se začnejo vesti kot kvantne tekočine. V preteklih desetletjih je fizika takšnih sistemov zelo napredovala - predvsem zaradi eksperimentov, v katerih lahko ultrahladne pline ujamejo v raznovrstne ograde, spreminjamo interakcijo med gradniki in jih obdržimo izolirane od okolice dovolj dolgo, da se ohrani njihova kvantna narava. Ta napredek je odprl možnosti eksperimentalnega študija enorazsežnih atomarnih plinov, ki se obnašajo kot kvantne abakove kroglice. Takšne posebne večdelčne kvantne sisteme lahko v nekaterih primerih eksaktno teoretično analiziramo, kar ne velja za večino kvantnih sistemov. To omogoča doslej neslutene priložnosti za teoretične in eksperimentalne raziskave močno koreliranih ravnovesnih in neravnovesnih stanj snovi. Najprej bomo predstavili splošne lastnosti tovrstnih sistemov, nato pa še naše izbrane točne rezultate s področja. Na koncu bomo pokazali, da ti sistemi nudijo poleg raziskav nizkodimenzionalnih kvantnih plinov tudi možnost realizacije modelov v več kot treh razsežnostih.
Predavanje bo v angleščini.
Lepo vabljeni!
*****
We invite you to the 20th Institute colloquium in the academic year 2012/13. The colloquium will be held on Wednesday June 5, 2013 at 1 PM in the main Institute lecture hall, Jamova 39, Ljubljana. To read the abstract click http://www.ijs.si/ijsw/Koledar_prireditev. Past colloquia are posted on http://videolectures.net/kolokviji_ijs.
********************************************
prof. dr. Hrvoje Buljan
Department of Physics, University of Zagreb, Zagreb, Croatia
Ultracold atomic gases as quantum abacus beads
Atomic gases can be cooled down to extremely low temperatures (a few nano-Kelvin above absolute zero) when they start behaving as quantum fluids. The physics of these systems has advanced considerably over the past decade because experiments can trap such ultracold gases in versatile geometries, their interactions can be tuned, and they can be kept isolated from the environment for sufficiently long times to preserve their quantum nature. These advances have opened the possibility to experimentally realize one-dimensional atomic gases so that they behave as quantum abacus beads. Such peculiar quantum systems of many particles can in some cases be theoretically understood exactly, which is not the case for most quantum systems. This gives an unprecedented opportunity to investigate strongly correlated states of matter, in and out of equilibrium, both theoretically and experimentally. We will present a general introduction of these systems and our selected results based on exact solutions in these systems. Finally, it will be shown that besides probing low dimensional quantum gases, these systems hold the potential to realize models in more than three dimensions.