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J. ALAMINOS, M. BREŠAR, J. EXTREMERA, AND A. R. VILLENA

Abstract. Let A and B be C∗-algebras, let X be an essential Banach A-
bimodule, and let T : A → B and S : A → X be continuous linear maps with

T surjective. Suppose that T (a)T (b) + T (b)T (a) = 0 and S(a)b + bS(a) +
aS(b) + S(b)a = 0 whenever a, b ∈ A are such that ab = ba = 0. We prove

that then T = wΦ and S = D + Ψ, where w lies in the centre of the multiplier

algebra of B, Φ: A → B is a Jordan epimorphism, D : A → X is a derivation,
and Ψ: A → X is a bimodule homomorphism.

Introduction

The question of characterizing homomorphisms on Banach algebras through the
action on zero products has attracted the attention of many authors over the last
years. We refer the reader to [2] for a full account of the topic and a list of references.
The pattern consists in considering the following condition on a linear map T from
a Banach algebra A into a Banach algebra B:

(H) a, b ∈ A, ab = 0 ⇒ T (a)T (b) = 0.

Such maps are treated in various contexts under different names (Lamperti opera-
tors, disjointness preserving maps, separating maps, zero product preserving maps).
It is obvious that every homomorphism from A into B satisfies (H) and the stan-
dard problem is to show that any map satisfying (H) is “close” to a homomorphism.
In fact, one usally wants to describe a map T satisfying (H) as being a weighted
homomorphism, which means that T = WΦ, where Φ: A→ B is a homomorphism
and W : B → B is a B-bimodule homomorphism.

A similar problem of characterizing Jordan homomorphisms through the action
on zero products has recently also attracted some interest [9, 10, 14, 15]. This
paper is primarily devoted to this topic. Our purpose is to investigate whether the
condition

(JH) a, b ∈ A, ab = ba = 0 ⇒ T (a) ◦ T (b) = 0

characterizes Jordan homomorphisms. Here and subsequently, ◦ stands for the
Jordan product

a ◦ b =
1

2
(ab+ ba)
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on a Banach algebra. In this regard our main result is that in the case when A
and B are C∗-algebras, then every continuous surjective linear map T : A → B
satisfying (JH) is of the form T = wΦ, where Φ: A→ B is a Jordan epimorphism
and w lies in the centre of the multiplier algebra of B. Let us recall that the
multiplier algebra of B can be thought of as the idealiser of B in its bidual B∗∗, i.e.
{b ∈ B∗∗ : bB +Bb ⊂ B}. For other version of linear preservers in Jordan context
we refer the reader to [8].

A similar question is concerned with derivations. In this context one is usually
involved with the following conditions on a linear map T from a Banach algebra A
into a Banach A-bimodule X:

(D1) a, b, c ∈ A, ab = bc = 0 ⇒ a · T (b) · c = 0;

(D2) a, b ∈ A, ab = 0 ⇒ T (a) · b+ a · T (b) = 0.

The preceding conditions have been considered in [2, Sections 4.2 and 4.3] and
the references contained therein. It should be pointed out that condition (D1)
has proved to be useful for studying local derivations [1, 12]. When dealing with
condition (D1) and (D2) one is intended to describe T as D+ Ψ, where D : A→ X
is a derivation and Ψ: A → X is a bimodule homomorphism. The natural way to
translate condition (JH) to the context of derivations is to consider the following
condition on a linear map T : A→ X:

(JD) a, b ∈ A, ab = ba = 0 ⇒ T (a) • b+ a • T (b) = 0.

Here and subsequently, • denotes the Jordan product on X

a • x = x • a =
1

2
(a · x+ x · a) (a ∈ A, x ∈ X).

We prove that, in the case when A is a C∗-algebra and X is an essential Banach A-
bimodule, condition (JD) implies that T is of the form T = D+Ψ, where D : A→ X
is a derivation and Ψ: A→ X is a bimodule homomorphism.

1. Bilinear maps vanishing on zero product

Let A be a Banach algebra and let φ : A×A→ X be a continuous bilinear map
into a Banach space X. In [2] we were concerned with the question of whether the
condition

a, b ∈ A, ab = 0 ⇒ φ(a, b) = 0

implies
φ(ab, c) = φ(a, bc) (a, b, c ∈ A).

It turned out in [2] that this is indeed the case for a large class of Banach algebras
which includes both C∗-algebras and group algebras, and this provided a powerful
tool for characterizing homomorphisms and derivations on that class of algebras.
Nevertheless, in order to avoid technicalities, in this paper we will restrict our
attention to C∗-algebras.

Theorem 1.1. [2] Let A be a C∗-algebra, let X be a Banach space, and let φ : A×
A→ X be a continuous bilinear map with the property that

(B) a, b ∈ A, ab = 0 ⇒ φ(a, b) = 0.

Then
φ(ab, c) = φ(a, bc) (a, b, c ∈ A)
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and there exists a continuous linear map Φ: A→ X such that

φ(a, b) = Φ(ab) (a, b ∈ A).

Throughout this paper we will be involved with a condition closely related to (B).
Now our method consists in considering continuous bilinear maps φ : A × A → X
satisfying:

(JB) a, b ∈ A, ab = ba = 0 ⇒ φ(a, b) = 0.

Theorem 1.2. Let A be a C∗-algebra, let X be a Banach space, and let φ : A×A→
X be a continuous bilinear map satisfying (JB). Then

φ(ab, cd)− φ(a, bcd) + φ(da, bc)− φ(dab, c) = 0 (a, b, c, d ∈ A)

and there exist continuous linear maps Φ,Ψ: A→ X such that

φ(ab, c)− φ(b, ca) + φ(bc, a) = Φ(abc) (a, b, c ∈ A)

and
φ(a, b) + φ(b, a) = Ψ(a ◦ b) (a, b ∈ A).

Proof. Pick a1, b1 ∈ A with a1b1 = 0 and define a continuous bilinear map
φ1 : A×A→ X by

φ1(a, b) = φ(b1a, ba1) (a, b ∈ A).

It is straightforward to check that φ1 satisfies (B). From Theorem 1.1 it follows
that φ1(ab, c) = φ1(a, bc) and so

(1.1) φ(b1ab, ca1)− φ(b1a, bca1) = 0

for all a, b, c ∈ A. We now fix a2, b2, c2 ∈ A and consider the continuous bilinear
map φ2 : A×A→ X defined by

φ2(a1, b1) = φ(b1a2b2, c2a1)− φ(b1a2, b2c2a1) (a1, b1 ∈ A).

According to (1.1), φ2 satisfies (B), and so Theorem 1.1 now yields φ2(a1b1, c1) −
φ2(a1, b1c1) = 0, that is,

φ(c1a2b2, c2a1b1)− φ(c1a2, b2c2a1b1)+

φ(b1c1a2, b2c2a1)− φ(b1c1a2b2, c2a1) = 0
(1.2)

for all a1, b1, c1, a2, b2, c2 ∈ A.
By taking into account that all the terms in (1.2) involve c1a2 and c2a1 and that

A2 = A, it may be concluded that

(1.3) φ(ab, cd)− φ(a, bcd) + φ(da, bc)− φ(dab, c) = 0

for all a, b, c, d ∈ A, as claimed in the theorem.
We now take a bounded approximate identity (ρi)i∈I for A. By applying (1.3)

with the element c replaced by ρi (i ∈ I) we see that the net (φ(dab, ρi))i∈I is
convergent and by taking limits we arrive at

φ(ab, d)− φ(a, bd) + φ(da, b)− lim
i∈I

φ(dab, ρi) =

lim
i∈I

(
φ(ab, ρid)− φ(a, bρid) + φ(da, bρi)− φ(dab, ρi)

)
= 0

for all a, b, d ∈ A. We can thus define a linear operator Φ: A3 → X by Φ(a) =
limi∈I φ(a, ρi) for each a ∈ A3. Since A3 = A the operator Φ is defined on A and
it satisfies

(1.4) φ(ab, c)− φ(b, ca) + φ(bc, a) = Φ(abc) (a, b, c ∈ A).
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On the other hand, for each a ∈ A the net (φ(a, ρi))i∈I is bounded and therefore
the operator Φ is continuous.

We now apply (1.4) with b replaced by ρi to see that that the net (φ(ρi, ca))i∈I
is convergent and that

φ(a, c)− lim
i∈I

φ(ρi, ca) + φ(c, a) =

lim
i∈I

(
φ(aρi, c)− φ(ρi, ca) + φ(ρic, a)

)
=

lim
i∈I

Φ(aρic) = Φ(ac)

(1.5)

for all a, c ∈ A. Since A2 = A, it follows that the net (φ(ρi, a))i∈I is convergent for
each a ∈ A and so we can define a continuous linear operator Φ′ : A→ X by

Φ′(a) = lim
i∈I

φ(ρi, a) (a ∈ A).

Consequently, the identity (1.5) now becomes

(1.6) φ(a, c) + φ(c, a) = Φ(ac) + Φ′(ca)

for all a, c ∈ A. By swapping a and c in (1.6) we arrive at

(1.7) φ(c, a) + φ(a, c) = Φ(ca) + Φ′(ac)

for all a, c ∈ A. By adding (1.6) and (1.7) we get

2
(
φ(a, c) + φ(c, a)

)
= Φ(ac+ ca) + Φ′(ac+ ca)

and so
φ(a, c) + φ(c, a) = Ψ(ac+ ca)

for all a, c ∈ A, where Ψ: A→ X is defined by Ψ = 1
2 (Φ + Φ′). �

If φ is symmetric, i.e. φ(a, b) = φ(b, a) holds for all a, b ∈ A, then the last
statement of the theorem shows that φ is of the form φ(a, b) = 1

2Ψ(a ◦ b). This can
be considered as a definitive result on the structure of φ. In the general case, when
φ is not necessarily symmetric, the analogous definitive conclusion would be that
φ(a, b) = Φ1(ab) + Φ2(ba) for some linear operators Φ1 and Φ2. Unfortunately this
does not seem to follow from Theorem 1.2.

Note that every bilinear map φ : A × A → X can be written as φ = φ1 + φ2

where φ1 is symmetric and φ2 is skew-symmetric (i.e. φ2(a, b) = −φ2(b, a) for all
a, b ∈ A); indeed, just define φ1 and φ2 by

φ1(a, b) =
1

2

(
φ(a, b) + φ(b, a)

)
and φ2(a, b) =

1

2

(
φ(a, b)− φ(b, a)

)
(a, b ∈ A).

It is clear that φ satisfies (JB) if and only if both φ1 and φ2 satisfy (JB). Since the
structure of φ1 is known by Theorem 1.2, one should only treat φ2. That is to say,
in order to describe bilinear maps φ satisfying (JB) it suffices to consider the case
when φ is skew-symmetric. The ultimate goal in this case is to show that there is
a linear operator Ψ : [A,A] → X such that φ(a, b) = Ψ([a, b]) for all a, b ∈ A. By
[A,A] we have of course denoted the linear span of all [a, b] with a, b ∈ A.

Remark 1.3. Let A and φ be as in Theorem 1.2, and additionally assume that φ is
skew-symmetric. We claim that

(1.8) φ(ab, c) + φ(ca, b) + φ(bc, a) = 0

holds for all a, b, c ∈ A, i.e. the map Φ from the theorem is 0. Pick a self-adjoint
element a ∈ A, let B be the C∗-subalgebra of A generated by a, and let b ∈ B with
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b3 = a. Since B is commutative, the restriction of φ to B×B satisfies the condition
(B). Theorem 1.1 then shows that φ(a1a2, a3) = φ(a1, a2a3) for all a1, a2, a3 ∈ B.
In particular, we have φ(b2, b) = φ(b, b2). However, since φ is skew-symmetric, it
follows that φ(b2, b) = −φ(b, b2) and so φ(b, b2) = 0. On the other hand, according
to (1.4) we have Φ(a) = Φ(b3) = 3φ(b2, b) = 0.

At least for the matrix algebraA = Mn(C) we know that skew-symmetric bilinear
maps satisfying (1.8) are indeed of the form φ(a, b) = Ψ([a, b]) [7, Theorem 2.1].

2. Characterizing Jordan homomorphisms through zero products

Let A and B be Banach algebras. A Jordan homomorphism from A into B is a
linear map Φ: A→ B such that

Φ(a ◦ b) = Φ(a) ◦ Φ(b) (a, b ∈ A).

It is obvious that each Jordan homomorphism Φ: A→ B satisfies (JH) and we now
address the question whether the converse holds true.

Lemma 2.1. Let A be a C∗-algebra and let T : A→ B be a continuous linear map
into a Banach algebra B satisfying (JH). Then

(2.1) T (ab) ◦ T (cd)− T (a) ◦ T (bcd) + T (da) ◦ T (bc)− T (dab) ◦ T (c) = 0

for all a, b, c, d ∈ A. Accordingly, if A and B are unital and T (1) = 1, then T is a
Jordan homomorphism.

Proof. It suffices to apply Theorem 1.2 to the continuous bilinear map φ : A×A→ B
given by φ(a, b) = T (a) ◦ T (b) for all a, b ∈ A. If A and B are unital and T (1) = 1,
then by setting a = c = 1 in (2.1) we get that T is a Jordan homomorphism. �

Lemma 2.2. Let A be a C∗-algebra and let T : A→ B be a continuous linear map
into a Banach algebra B satisfying (JH). Then there exists a continuous linear

operator W : T (A)→ B such that ‖W‖ ≤ ‖T‖ and

(2.2) W (T (a ◦ b)) = T (a) ◦ T (b) (a, b ∈ A).

Proof. Let (ρi)i∈I be an approximate identity for A of bound 1.
From (2.1) we deduce that

T (ρi) ◦ T (abc) =T (ρia) ◦ T (bc) + T (cρi) ◦ T (ab)− T (cρia) ◦ T (b)

→T (a) ◦ T (bc) + T (c) ◦ T (ab)− T (ca) ◦ T (b)
(2.3)

for all a, b, c ∈ A. Since A3 = A, it follows that the net (T (ρi) ◦ u)i∈I converges for
each u ∈ T (A). On the other hand, from the boundedness of (T (ρi))i∈I we deduce

that, in fact, the net (T (ρi) ◦ u)i∈I converges for each u ∈ T (A) so that we can

define a linear operator W : T (A)→ B by

W (u) = lim
i∈I

T (ρi) ◦ u (u ∈ T (A)).

Of course, the operator W is continuous with ‖W‖ ≤ ‖T‖ and (2.3) now becomes

W (T (abc)) = T (a) ◦ T (bc) + T (c) ◦ T (ab)− T (b) ◦ T (ca) (a, b, c ∈ A).
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Hence it follows that

W (T (ab)) = lim
i∈I

W (T (aρib))

= lim
i∈I

(
T (a) ◦ T (ρib) + T (b) ◦ T (aρi)− T (ρi) ◦ T (ba)

)
= T (a) ◦ T (b) + T (b) ◦ T (a)−W (T (ba))

for all a, b ∈ A. Therefore W (T (a ◦ b)) = T (a) ◦ T (b) (a, b ∈ A), as claimed in the
lemma. �

Theorem 2.3. Let A and B be C∗-algebras and let T : A → B be a continuous
surjective linear map satisfying the condition

a, b ∈ A, ab = ba = 0 ⇒ T (a) ◦ T (b) = 0.

Then there exist an invertible element w in the centre of the multiplier algebra of
B and a Jordan epimorphism Φ: A→ B such that T = wΦ.

Proof. Let W be the map given in Lemma 2.2.
We now claim that W is surjective. Let b ∈ B positive and let a ∈ A such that

T (a) = b1/2. Then (2.2) shows that W (T (a2)) = b. This clearly entails that W is
surjective.

By bidualizing (2.2) we obtain

(2.4) W ∗∗(T ∗∗(x ◦ y)) = T ∗∗(x) ◦ T ∗∗(y) (x, y ∈ A∗∗).
Indeed, to prove the above identity one just observe how the algebraic identity (2.2)
carries over by the σ(A∗∗, A∗) − σ(B∗∗, B∗)-continuity of T ∗∗, the σ(B∗∗, B∗) −
σ(B∗∗, B∗)-continuity of W ∗∗, and the separate weak continuity of the products of
both A∗∗ and B∗∗, one variable at a time.

Let us recall that A∗∗ is unital. Write w = T ∗∗(1). From (2.4) we deduce that

(2.5) W ∗∗(T ∗∗(x)) = W ∗∗(T ∗∗(1 ◦ x)) = w ◦ T ∗∗(x) (x ∈ A∗∗).
Since T ∗∗(A∗∗) = B∗∗, the identity (2.5) entails that

(2.6) W (u) = w ◦ u (u ∈ B).

Let e ∈ A∗∗ be a projection. According to (2.4) and (2.5), we have

(2.7) w ◦ T ∗∗(e) = W ∗∗(T ∗∗(e)) = W ∗∗(T ∗∗(e2)) = T ∗∗(e)2.

By multiplying (2.7) by T ∗∗(e) on the left we obtain

(2.8) T ∗∗(e)wT ∗∗(e) + T ∗∗(e)2w = 2T ∗∗(e)3

and multiplying by T ∗∗(e) on the right we get

(2.9) wT ∗∗(e)2 + T ∗∗(e)wT ∗∗(e) = 2T ∗∗(e)3.

From (2.8) and (2.9) we arrive at wT ∗∗(e)2 = T ∗∗(e)2w, which, on account of (2.7),
yields wW ∗∗(T ∗∗(e)) = W ∗∗(T ∗∗(e))w.

Therefore wW ∗∗(T ∗∗(x)) = W ∗∗(T ∗∗(x))w for each x ∈ A∗∗. Since T ∗∗(A∗∗) =
B∗∗, it follows that wW ∗∗(y) = W ∗∗(y)w for each y ∈ B∗∗. Since W is surjective,
it may be concluded that so is W ∗∗, hence w lies in the centre of B∗∗, and finally
that w is invertible. According to (2.6), we have

W (u) = w ◦ u = wu = uw (u ∈ B).

The preceding identity clearly implies that wB,Bw ⊂ B and hence w lies in the
multiplier algebra of B.
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We now define Φ = W−1T = w−1T . Of course, Φ is surjective. We proceed to
show that Φ is a Jordan homomorphism. Let a, b ∈ A. On account of (2.2), we
have

Φ(a ◦ b) = W−1
(
T (a ◦ b)

)
= W−1

(
W−1

(
T (a) ◦ T (b)

))
=

w−2
(
T (a) ◦ T (b)

)
=

(
w−1T (a)

)
◦
(
w−1T (b)

)
= Φ(a) ◦ Φ(b).

�

Corollary 2.4. Let A and B be C∗-algebras with B prime, and and let T : A→ B
be a continuous surjective linear map satisfying the condition

a, b ∈ A, ab = ba = 0 ⇒ T (a) ◦ T (b) = 0.

Then there exist a non-zero complex number λ and either an epimorphism or an
anti-epimorphism Φ: A→ B such that T = λΦ.

Proof. Since B is a prime C∗-algebra, it follows that the centre of the multiplier
algebra of B is a commutative prime C∗-algebra and so it is isomorphic to C. On
account of Theorem 2.3, there exist a non-zero complex number λ and a Jordan
epimorphism Φ: A→ B such that T = λΦ. On the other hand, a well-known result
by I. N. Herstein [13] states that every Jordan homomorphism onto a (2-torsion free)
prime ring is either a homomorphism or an anti-homomorphism. �

Remark 2.5. A rather natural weakening of condition (H) is the following one:

(JH1) a, b ∈ A, ab = ba = 0 ⇒ T (a)T (b) = 0.

On the other hand, a natural translation of (H) to Jordan context, which has been
considered by a number of authors, is the following:

(JH2) a, b ∈ A, a ◦ b = 0 ⇒ T (a) ◦ T (b) = 0.

A way to unify and generalize both of the preceding conditions consists in consid-
ering our condition (JH). Of course, both Theorem 2.3 and Corollary 2.4 remain
valid with condition (JH) replaced by any of the above conditions. It is clear that
every Jordan homomorphism Φ: A→ B satisfies (JH2). However, it is not clear at
all that Φ satisfies (JH1); anyway, under rather mild assumptions it does. Indeed,
assume that B is semiprime and Φ(A) = B. From [4, Corollary 2.2] we have

(2.10)
(

Φ(ab)− Φ(a)Φ(b)
)
B
(

Φ(cd)− Φ(d)Φ(c)
)

= {0} (a, b, c, d ∈ A).

If a, b ∈ A are such that ab = ba = 0, then (2.10) with c = b and d = a yields
Φ(a)Φ(b)BΦ(a)Φ(b) = 0 and therefore Φ(a)Φ(b) = 0.

Let us mention the following interesting consequence of identity (1.8) in Remark
1.3 for analyzing the Lie-type version of condition (JH). As usual, we write [·, ·] for
the Lie product

[a, b] = ab− ba
on a Banach algebra.

Corollary 2.6. Let A and B be unital prime C∗-algebras such that neither A nor
B is isomorphic to M2(C). Let T : A → B be a continuous bijective linear map
such that

(LH) a, b ∈ A, ab = ba = 0 ⇒ [T (a), T (b)] = 0.
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Then there exist a non-zero complex number λ, either an isomorphism or an anti-
isomorphism Φ: A→ B, and a linear functional f on A such that T (a) = λΦ(a) +
f(a)1 for all a ∈ A.

Proof. Obviously, the result is true in the case when both A and B are isomorphic
to C. Accordingly, from now on we assume that neither A nor B is isomorphic to
either C or M2(C)

Define φ : A × A → B by φ(a, b) = [T (a), T (b)] for all a, b ∈ A. According to
Remark 1.3 we have φ(ab, c) + φ(ca, b) + φ(bc, a) = 0 for all a, b, c ∈ A. Setting
a = b = c it follows that φ(a2, a) = 0. That is, [T (a2), T (a)] = 0 for each a ∈ A.
Our objective is to apply [5, Theorem 2] and then the desired conclusion follows.
Nevertheless, to this end we are required to check that neither A nor B satisfies
the standard polynomial identity S4 and that both A and B are centrally closed.

We first claim that neither A nor B satisfies S4. Indeed, if a C∗-algebra A
satisfies S4, then it can be embedded into M2(C) for a commutative C∗-algebra C
([3, Theorem 6.1.7]). If A is in addition prime, then C is easily seen to be prime,
which entails that C ∼= C and therefore that A embeds into M2(C). According
to Wedderburn structure theorem ([11, Theorem 1.5.9]), A is isomorphic to a full
matrix algebra, so that either A ∼= C or A ∼= M2(C).

Our final observation is that all prime C∗-algebras are centrally closed [3, Propo-
sition 2.2.10]. �

It should be mentioned that the assumption that both A and B are different
from M2(C) is certainly necessary in Corollary 2.6. By [17, Theorem 1.1], every
linear map T : M2(C) → M2(C) that sends the identity matrix 1 into a scalar
multiple of 1 automatically preserves commutativity, and hence also satisfies (LH).
However, not every such map has the form described in the corollary.

Remark 2.7. It should be pointed out that the Lie-type version of the associative
condition (H) and the Jordan condition (JH2) is nothing but the classical condition
of preserving commutativity:

(C) a, b ∈ A, [a, b] = 0 ⇒ [T (a), T (b)] = 0.

The standard goal is to express such maps through (anti)homomorphisms and maps
having their range in the centre. The literature on this subject is really vast.
Let us just refer [6, Chapter 7] for references and history. The condition (LH)
simultaneously generalizes two seemingly unrelated conditions: the condition (C)
that T preserves commutativity and the condition that T preserves zero products
(more precisely, the condition (JH1), which of course is more general than (H)).

3. Characterizing derivations through zero products

Let A be a Banach algebra, let X be a Banach A-bimodule, and let D : A→ X
be a linear map. Then D is a Jordan derivation if

D(a ◦ b) = D(a) • b+ a •D(b) (a, b ∈ A).

Since we will be concerned with Jordan derivations on a C∗-algebra A, it should
be pointed out that B. E. Johnson showed in [16] that every continuous Jordan
derivation D : A→ X into any Banach A-bimodule is a derivation.
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Theorem 3.1. Let A be a C∗-algebra, let X be an essential Banach A-bimodule,
and let T : A→ X be a continuous linear map satisfying

a, b ∈ A, ab = ba = 0 ⇒ T (a) • b+ a • T (b) = 0.

Then there exist a derivation D : A→ X and a bimodule homomorphism Φ: A→ X
such that T = D + Φ.

Proof. Throughout this proof we will use the fact that for every Banach algebra
A and every Banach A-bimodule X, X∗∗ turns into a Banach A∗∗-bimodule with
respect to the operations defined by

u · ξ = lim
i∈I

lim
j∈J

ai · xj , ξ · u = lim
j∈J

lim
i∈I

xj · ai (u ∈ A∗∗, ξ ∈ X∗∗),

where (ai)i∈I is any net in A with σ(A∗∗, A∗) − lim ai = u and (xj)j∈J is any
net in X with σ(X∗∗, X∗) − limxj = ξ, and A∗∗ is endowed with the first Arens
product ([11, Theorem 2.6.15]). We shall use the following basic facts about the
weak continuity of the above defined products which the reader can find in [11,
Proposition A.3.52].

(i) For all u ∈ A∗∗ and a ∈ A, the maps ξ 7→ ξ · u and ξ 7→ a · ξ from X∗∗ into
itself are σ(X∗∗, X∗)-continuous.

(ii) For all ξ ∈ X∗∗ and x ∈ X, the maps u 7→ u · ξ and u 7→ x ·u from A∗∗ into
X∗∗ are σ(A∗∗, A∗)− σ(X∗∗, X∗)-continuous.

It is well-known that every C∗-algebra A has the property that every continuous
linear map from A into its dual A∗ is weakly compact [11, Corollary 3.2.43]. This
property entails that every continuous bilinear map φ : A × A → X into some
Banach space X is Arens regular, which means that the two ways of extending to
the second dual (see [11, Identities (A.3.8) and (A.3.9) on page 824]) give the same
result, that is

(3.1) lim
i∈I

lim
j∈J

φ(ai, bj) = lim
j∈I

lim
i∈I

φ(ai, bj)

for all σ(A∗∗, A∗)-convergent nets (ai)i∈I and (bj)j∈J in A; the limits in (3.1) are
taken with respect to the topology σ(X∗∗, X∗). Of course, this property entails
that A is Arens regular.

By applying Theorem 1.2 to the bilinear map

(a, b)→ T (a) • b+ a • T (b)

we obtain

T (ab) • cd+ ab • T (cd)− T (a) • bcd− a • T (bcd)

+T (da) • bc+ da • T (bc)− T (dab) • c− dab • T (c) = 0
(3.2)

for all a, b, c, d ∈ A. We bidualize (3.2) taking into account the regularity of A, the
σ(A∗∗, A∗)−σ(X∗∗, X∗)-continuity of T ∗∗, the separate weak continuity properties
of the module operations on X∗∗, and identity (3.1). We thus get

T ∗∗(ab) • cd+ ab • T ∗∗(cd)− T ∗∗(a) • bcd− a • T ∗∗(bcd)

+T ∗∗(da) • bc+ da • T ∗∗(bc)− T ∗∗(dab) • c− dab • T ∗∗(c) = 0
(3.3)

for all a, b, c, d ∈ A∗∗.
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Let 1 the identity of A∗∗ and write ξ = T ∗∗(1) ∈ X∗∗. By applying (3.3) with
a = c = 1 and arbitrary b, d ∈ A∗∗ we get

T ∗∗(b) • d+ b • T ∗∗(d)− ξ • bd− 1 • T ∗∗(bd)

+T ∗∗(d) • b+ d • T ∗∗(b)− T ∗∗(db) • 1− db • ξ = 0.
(3.4)

On the other hand, since X is essential it follow that 1·x = x·1 = x for each x ∈ X.
On account of the σ(X∗∗, X∗)-denseness of X in X∗∗ and the σ(X∗∗, X∗)-continuity
of the map x 7→ x · 1, we have

(3.5) ζ · 1 = ζ (ζ ∈ X∗∗).
Unfortunately, we can not be sure about the identity 1 · ζ = ζ for an arbitrary
ζ ∈ X∗∗. Nevertheless, we claim that

(3.6) 1 · T ∗∗(a) = T ∗∗(a) (a ∈ A∗∗).
Indeed, let a ∈ A∗∗ and let (ρi)i∈I and (aj)j∈J be nets in A converging to 1 and a,
respectively, with respect to the topology σ(A∗∗, A∗). Then

1 · T ∗∗(a) = lim
i∈I

lim
j∈J

ρi · T (aj) = lim
j∈J

lim
i∈I

ρi · T (aj) = lim
j∈J

T (aj) = T ∗∗(a),

where the limits above are taken with respect to the topology σ(X∗∗, X∗).
According to (3.5) and (3.6), (3.4) reads as follows

(3.7) T ∗∗(b ◦ d) = T ∗∗(b) • d+ b • T ∗∗(d)− ξ • (b ◦ d) (b, d ∈ A∗∗).
In particular, we have

(3.8) T (a ◦ b) = T (a) • b+ a • T (b)− ξ • (a ◦ b) (a, b ∈ A).

Our next objective is to show that ξ · a = a · ξ for each a ∈ A∗∗. Of course, it
suffices to prove the identity for each projection in A∗∗. Let e ∈ A∗∗ be a projection.
Then we take b = d = e in (3.7) and we thus get

(3.9) T (e) = T (e) · e+ e · T (e)− 1

2
ξ · e− 1

2
e · ξ.

We multiply (3.9) on the right by e to obtain

T (e) · e = T (e) · e+ e · T (e) · e− 1

2
ξ · e− 1

2
e · ξ · e

and so

(3.10) 0 = e · T (e) · e− 1

2
ξ · e− 1

2
e · ξ · e.

Similarly, by multiplying (3.9) on the left by e, we arrive at

(3.11) 0 = e · T (e) · e− 1

2
e · ξ · e− 1

2
e · ξ.

From (3.10) and (3.11) we deduce that ξ · e = e · ξ, as required.
We now claim that ξ ·A ⊂ X. It suffices to prove that ξ ·a ∈ X for each positive

element a ∈ A. Let a be a positive element in A and let b ∈ A with b2 = a.
According to (3.8) and the commutativity property of ξ, we have

ξ · a = ξ • b2 = 2T (b) • b− T (a) ∈ X.
Observe that the map Φ: A→ X defined by Φ(a) = ξ ·a (a ∈ A) is a continuous

A-bimodule homomorphism. We then define D : A → X by D = T − Φ. From
(3.8) it is easily checked that D is a Jordan derivation. On account of [16], D is a
derivation. �
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Remark 3.2. The natural way to translate conditions (JH1) and (JH2) to the con-
text of derivations consists in considering the following conditions on a linear map
T : A→ X:

(JD1) a, b ∈ A, ab = ba = 0 ⇒ T (a) · b+ a · T (b) = 0;

(JD2) a, b ∈ A, a ◦ b = 0 ⇒ T (a) • b+ a • T (b) = 0.

It should be pointed out that each of the conditions (JD1) and (JD2) implies (JD)
and therefore that Theorem 3.1 still works with condition (JD2) replaced by any
of the above conditions.

References
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[7] M. Brešar and P. Šemrl, On bilinear maps on matrices with applications to commutativity

preservers, J. Algebra 301 (1989), 803-837.
[8] M. Burgos, F. J. Fernández-Polo, J. J. Garcés, J. Mart́ınez Moreno, and A. M.

Peralta, Orthogonality preservers in C∗-algebras, JB∗-algebras and JB∗-triples, J. Math.

Anal. Appl. 348 (2008), no. 1, 220-233.
[9] M. A. Chebotar, W.-F. Ke and P.-H. Lee, Maps preserving zero Jordan products on

hermitian operators, Illinois J. Math 49, no. 2 (2006), 445-452.

[10] M. A. Chebotar, W.-F. Ke, P.-H. Lee and R. Zhang, On maps preserving zero Jordan
products, Monatsh. Math. 149 (2006), no. 2, 91-101.

[11] H. G. Dales, Banach algebras and automatic continuity. London Mathematical Society

Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York, 2000. xviii+907 pp. ISBN: 0-19-850013-0.

[12] D. Hadwin and J. Li, Local derivations and local automorphisms, J. Math. Anal. Appl. 290
(2004), 702-714.

[13] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-351.

[14] J. Hou and L. Zhao, Zero-product preserving additive maps on symmetric operator spaces
and self-adjoint operator spaces, Linear Algebra Appl. 399 (2005), 235-244.

[15] J. Hou and L. Zhao, Jordan zero-product preserving additive maps on operator algebras, J.

Math. Anal. Appl. 314 (2006), 689-700.
[16] B. E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations,

Math. Proc. Camb. Phil. Soc. 120 (1996), 455-473.
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