Papers:

  1. Discs in Stein manifolds containing given discrete sets. Math. Z., 239 (2002), 683-702. pdf
  2. Proper holomorphic discs avoiding closed convex sets. Math. Z., 241 (2002), 593-596. pdf
  3. Proper discs in Stein manifolds avoiding complete pluripolar sets. Math. Res. Lett., 11 (2004), 575-581. pdf
  4. On proper discs in complex manifolds, Ann. Inst. Fourier (Grenoble), 57 (2007), 1521-1535. pdf [arXiv:math.CV/0503449]
  5. with F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J., 139 (2007), 203-253. pdf [arXiv.math.CV/0604118]
  6. with F. Forstnerič, Approximation of holomorphic mappings on strongly pseudoconvex domains, Forum Math., 20 (2008), 817-840. [arXiv.math.CV/0607185]
  7. with F. Forstnerič, Strongly pseudoconvex domains as subvarieties of complex manifolds, Amer. J. Math, 132 (2010), 331-360. [arXiv:0708.2155]
  8. with F. Forstnerič, The Poletsky-Rosay theorem on singular complex spaces, Indiana Univ. Math. J. 61 (2012), 1407-1423. [arXiv:1104.3968]
  9. with F. Forstnerič, Disc functionals and Siciak-Zaharyuta extremal functions on singular varieties, Ann. Pol. Math. 106 (2012), 171-191. [arXiv:1109.3947]
  10. with F. Forstnerič, Characterizations of projective hulls by analytic discs, Illinois J. Math. 56 (2012), 53-65.  [arXiv:1201.0653]
  11. A disc formula for plurisubharmonic subextensions in manifolds, J. Geom. Anal. 25 (2015) 1401–1408. [arXiv: 1212.3992]
  12. with U. Kuzman, Lelong functional on almost complex manifolds, Complex Var. Elliptic Equ. 60 (2015), 168–180.  [arXiv: 1311.4357]
  13. with F. Forstnerič, Minimal hulls of compact sets in R3, Trans. Amer. Math. Soc. 368 (2016), 7477-7506. [arXiv: 1409.6906]
  14. Complete proper holomorphic embeddings of strictly pseudoconvex domains into balls, J. Math. Anal. Appl. 431 (2015) 705–713. [arXiv: 1501.00588]
  15. with R. Sigurdsson, A note on weighted homogeneous Siciak-Zaharyuta extremal functions, Indag. Math.  27 (2016)  94-99. [arXiv: 1501.07736]
  16. with A. Alarcon, F. Forstnerič and F. J. Lopez, Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves, Proc. London Math. Soc.  111 (2015) 851-886. [arXiv: 1503.00775]
  17. with A. Alarcon, F. Forstnerič and F. J. Lopez, Minimal surfaces in minimally convex domains, Trans. Amer. Math. Soc. 371 (2019), 1735–1770.   [arXiv: 1510.04006]
  18. with M. Slapar, Proper holomorphic curves attached to domains, Complex Var. Elliptic Equ. 65 (2020), 489–497.  [arXiv: 1811.03363]
  19. with U. Kuzman, Approximation theorems for Pascali systems [arXiv:2104.03833]