Non-orientable minimal surfaces in \mathbb{R}^n

Franc Forstnerič

University of Ljubljana
http://www.fmf.uni-lj.si/~forstneric/

Erwin Schrödinger Institute, Vienna

November 2015
Abstract

The purpose of this lecture is to show how complex analytic methods can be used for constructions of orientable and also non-orientable minimal surfaces in \mathbb{R}^n for any $n \geq 3$. In particular, we obtain

- the Mergelyan approximation theorem and the Oka principle for conformal minimal surfaces in \mathbb{R}^n;
- (complete) proper minimal surfaces in convex domains in \mathbb{R}^n ($n \geq 3$) and in minimally convex domains in \mathbb{R}^3;
- complete minimal surfaces in \mathbb{R}^n bounded by Jordan curves.

Based on joint work with

- Antonio Alarcón and Francisco J. López, University of Granada
- Barbara Drinovec Drnovšek, University of Ljubljana
A (very) brief history of minimal surface theory

1744 Euler The only area minimizing surfaces of rotation in \mathbb{R}^3 are planes and catenoids.

1760 Lagrange: A graph $z = f(x, y)$ is area minimizing if and only if

$$\text{div} \left(\frac{\nabla f}{\sqrt{1 + |\nabla f|^2}} \right) = 0.$$

1776 Meusnier A smooth surface $S \subset \mathbb{R}^3$ satisfies locally the above equation iff its mean curvature function H vanishes identically. The helicoid is a minimal surface.

1873 Plateau Minimal surfaces can be obtained as soap films.

1932 Douglas, Radó Every Jordan curve in \mathbb{R}^3 spans a minimal surface.

1965 Calabi’s Conjecture: Every complete minimal surface in \mathbb{R}^3 is unbounded. (Complete: every divergent curve has infinite length.) This conjecture, which is wrong as stated, opened a major direction.

Conformal minimal $=$ conformal harmonic

Theorem (Classical)

Let M be a surface endowed with a conformal structure. The following are equivalent for a conformal immersion $X : M \rightarrow \mathbb{R}^n$ ($n \geq 3$):

- X is minimal (a stationary point of the area functional).
- X has identically vanishing mean curvature vector: $H = 0$.
- X is harmonic: $\triangle X = 0$.

Indeed, we have $\triangle X = 2\bar{\zeta}H$ where $\bar{\zeta} = |X_u|^2 = |X_v|^2$ and $\zeta = u + iv$ be a local holomorphic coordinate on M.

We emphasize the difference between minimal surfaces: these are stationary points of the area functional, and are locally area minimizing; and area-minimizing surfaces: these are surfaces which globally minimize the area among all nearby surfaces with the same boundary. Minimal graphs $z = f(x, y)$ are area minimizing.
Conformal minimal $= \text{conformal harmonic}$

Theorem (Classical)

Let M be a surface endowed with a conformal structure. The following are equivalent for a **conformal** immersion $X : M \to \mathbb{R}^n$ ($n \geq 3$):

- X is minimal (a stationary point of the area functional).
- X has identically vanishing mean curvature vector: $H = 0$.
- X is harmonic: $\triangle X = 0$.

Indeed, we have $\triangle X = 2\zeta H$ where $\zeta = |X_u|^2 = |X_v|^2$ and $\zeta = u + iv$ be a local holomorphic coordinate on M.

We emphasize the difference between

- **minimal surfaces**: these are stationary points of the area functional, and are **locally area minimizing**; and
Conformal minimal = conformal harmonic

Theorem (Classical)

Let M be a surface endowed with a conformal structure. The following are equivalent for a conformal immersion $X : M \to \mathbb{R}^n$ ($n \geq 3$):

- X is minimal (a stationary point of the area functional).
- X has identically vanishing mean curvature vector: $H = 0$.
- X is harmonic: $\triangle X = 0$.

Indeed, we have $\triangle X = 2\zeta H$ where $\zeta = |X_u|^2 = |X_v|^2$ and $\zeta = u + iv$ be a local holomorphic coordinate on M.

We emphasize the difference between

- **minimal surfaces**: these are stationary points of the area functional, and are locally area minimizing; and

- **area-minimizing surfaces**: these are surfaces which globally minimize the area among all nearby surfaces with the same boundary. Minimal graphs $z = f(x, y)$ are area minimizing.
Let M be an open Riemann surface and $X = (X_1, \ldots, X_n): M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.
Weierstrass representation of orientable minimal surfaces

Let M be an open Riemann surface and $X = (X_1, \ldots, X_n) : M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of X is equivalent to the **nullity condition**

$$(\partial X_1)^2 + (\partial X_2)^2 + \cdots + (\partial X_n)^2 = 0.$$
Let M be an open Riemann surface and $\mathbf{X} = (X_1, \ldots, X_n) : M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of \mathbf{X} is equivalent to the **nullity condition**

$$(\partial X_1)^2 + (\partial X_2)^2 + \cdots + (\partial X_n)^2 = 0.$$

This is because a vector $\mathbf{w} = (w_1, \ldots, w_n) = u + iv \in \mathbb{C}^n$ satisfies

$$\sum_j w_j^2 = |u|^2 - |v|^2 + 2iu \cdot v.$$
Weierstrass representation of orientable minimal surfaces

Let M be an open Riemann surface and $X = (X_1, \ldots, X_n) : M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of X is equivalent to the **nullity condition**

$$(\partial X_1)^2 + (\partial X_2)^2 + \cdots + (\partial X_n)^2 = 0.$$

This is because a vector $w = (w_1, \ldots, w_n) = u + iv \in \mathbb{C}^n$ satisfies $\sum_j w_j^2 = |u|^2 - |v|^2 + 2iv \cdot u$. Hence $\partial X = f\theta$, where f assumes values in

$$A_* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n \setminus \{0\} : \sum_{j=1}^n z_j^2 = 0 \} \quad (\text{null quadric}).$$
Weierstrass representation of orientable minimal surfaces

Let M be an open Riemann surface and $\mathbf{X} = (X_1, \ldots, X_n): M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of \mathbf{X} is equivalent to the **nullity condition**

$$(\partial X_1)^2 + (\partial X_2)^2 + \cdots + (\partial X_n)^2 = 0.$$

This is because a vector $w = (w_1, \ldots, w_n) = u + iv \in \mathbb{C}^n$ satisfies $\sum_j w_j^2 = |u|^2 - |v|^2 + 2i u \cdot v$. Hence $\partial \mathbf{X} = f \theta$, where f assumes values in

$$A_* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n \setminus \{0\}: \sum_{j=1}^n z_j^2 = 0 \} \quad \text{(null quadric)}.$$

Since $\bar{\partial}\partial \mathbf{X} = \bar{\partial} f \wedge \theta$, \mathbf{X} is harmonic iff $f = \partial \mathbf{X}/\theta$ is holomorphic.
Weierstrass representation of orientable minimal surfaces

Let M be an open Riemann surface and $X = (X_1, \ldots, X_n) : M \to \mathbb{R}^n$ a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of X is equivalent to the **nullity condition**

$$(\partial X_1)^2 + (\partial X_2)^2 + \cdots + (\partial X_n)^2 = 0.$$

This is because a vector $w = (w_1, \ldots, w_n) = u + iv \in \mathbb{C}^n$ satisfies

$$\sum_j w_j^2 = |u|^2 - |v|^2 + 2i u \cdot v.$$

Hence $\partial X = f \theta$, where f assumes values in

$$\mathcal{A}_* = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n \setminus \{0\} : \sum_{j=1}^n z_j^2 = 0\} \quad \text{(null quadric)}.$$

Since $\bar{\partial} \partial X = \bar{\partial} f \wedge \theta$, X is harmonic iff $f = \partial X / \theta$ is holomorphic.

Conclusion: Every conformal minimal immersion $M \to \mathbb{R}^n$ is of the form

$$X(p) = X(p_0) + 2 \int_{p_0}^p \Re (f \theta), \quad p_0, p \in M,$$

where $f : M \to \mathcal{A}_*$ is holomorphic and the real periods of $f \theta$ vanish.
Connection with holomorphic null curves

The flux homomorphism $\text{Flux}(\mathbf{X}) : H_1(M, \mathbb{Z}) \to \mathbb{R}^n$:

$$\text{Flux}(\mathbf{X})(\gamma) = \int_\gamma d^c \mathbf{X} = 2 \int_\gamma \mathcal{S}(f \theta), \quad [\gamma] \in H_1(M, \mathbb{Z}).$$
The **flux homomorphism** $\text{Flux}(X) : H_1(M, \mathbb{Z}) \to \mathbb{R}^n$:

$$\text{Flux}(X)(\gamma) = \int_\gamma d^c X = 2 \int_\gamma \Im(f \theta), \quad [\gamma] \in H_1(M, \mathbb{Z}).$$

If $\text{Flux}(X) = 0$, then

$$Z(p) = \int_p^p f \theta \in \mathbb{C}^n, \quad p \in M$$

is a **holomorphic null curve** $Z = (Z_1, \ldots, Z_n) : M \to \mathbb{C}^n$, i.e.,

$$(\partial Z_1)^2 + (\partial Z_2)^2 + \cdots + (\partial Z_n)^2 = 0.$$
Connection with holomorphic null curves

The **flux homomorphism** \(\text{Flux}(X): H_1(M, \mathbb{Z}) \to \mathbb{R}^n \):

\[
\text{Flux}(X)(\gamma) = \int_{\gamma} \bar{S}(f\theta) = 2 \int_{\gamma} \Im(f\theta), \quad [\gamma] \in H_1(M, \mathbb{Z}).
\]

If \(\text{Flux}(X) = 0 \), then

\[
Z(p) = \int_{p} f\theta \in \mathbb{C}^n, \quad p \in M
\]

is a **holomorphic null curve** \(Z = (Z_1, \ldots, Z_n): M \to \mathbb{C}^n \), i.e.,

\[
(\partial Z_1)^2 + (\partial Z_2)^2 + \cdots + (\partial Z_n)^2 = 0.
\]

The real and the imaginary part of a holomorphic null curve \(Z = X + iY: M \to \mathbb{C}^n \) are conformal minimal immersions \(X, Y: M \to \mathbb{R}^n \). The converse holds on the disk \(\mathbb{D} = \{ \zeta \in \mathbb{C}: |\zeta| < 1 \} \).
The punctured null quadric is an Oka manifold

Theorem

The punctured null quadric

\[\mathcal{A}_* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n \setminus \{0\} : \sum_{j=1}^{n} z_j^2 = 0 \} \]

is an **Oka manifold**, i.e., maps \(M \to \mathcal{A}_* \) from any Stein manifold \(M \) (in particular, from any open Riemann surface) satisfy all forms of the Oka principle (with approximation, interpolation, parametric, \ldots).
The punctured null quadric is an Oka manifold

Theorem

The punctured null quadric

\[\mathcal{A}_* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n \setminus \{0\} : \sum_{j=1}^{n} z_j^2 = 0 \} \]

is an **Oka manifold**, i.e., maps \(M \to \mathcal{A}_* \) from any Stein manifold \(M \) (in particular, from any open Riemann surface) satisfy all forms of the Oka principle (with approximation, interpolation, parametric, \ldots).

Proof: The holomorphic vector fields on \(\mathbb{C}^n \),

\[V_{j,k}(z) = z_j \frac{\partial}{\partial z_k} - z_k \frac{\partial}{\partial z_j}, \quad 1 \leq j, k \leq n \]

are linear and hence \(\mathbb{C} \)-complete, their flows preserve \(\mathcal{A}_* \), and they span the tangent space of \(\mathcal{A}_* \) at every point. Thus, \(\mathcal{A}_* \) is elliptic in the sense of Gromov, and hence an Oka manifold. **M. Gromov, JAMS 2 (1989).**
A survey of our main results, 2013–2015

Let M be an open Riemann surface and θ a nonvanishing holomorphic 1-form on M (such exists by the Oka-Grauert Principle).
Let M be an open Riemann surface and θ a nonvanishing holomorphic 1-form on M (such exists by the Oka-Grauert Principle).

- **Oka principle:** Every continuous map $f_0 : M \to A_*$ is homotopic to a holomorphic map $f : M \to A_*$ such that $f\theta$ has vanishing periods, hence it defines a holomorphic null curve $\int f\theta : M \to \mathbb{C}^n$.

A. Alarcón, F. Forstnerič, Inventiones Math. 196 (2014)
A survey of our main results, 2013–2015

Let M be an open Riemann surface and θ a nonvanishing holomorphic 1-form on M (such exists by the Oka-Grauert Principle).

- **Oka principle:** Every continuous map $f_0: M \rightarrow \mathbb{A}_*$ is homotopic to a holomorphic map $f: M \rightarrow \mathbb{A}_*$ such that $f\theta$ has vanishing periods, hence it defines a holomorphic null curve $\int f\theta: M \rightarrow \mathbb{C}^n$.

 A. Alarcón, F. Forstnerič, Inventiones Math. 196 (2014)

- **Runge approximation theorem:** If K is a compact Runge subset of M, then every conformal minimal immersion $K \rightarrow \mathbb{R}^n$ can be approximated by proper conformal minimal immersions $M \rightarrow \mathbb{R}^n$. The analogous result for null curves.

A survey of our main results, 2013–2015

Let M be an open Riemann surface and θ a nonvanishing holomorphic 1-form on M (such exists by the Oka-Grauert Principle).

- **Oka principle:** Every continuous map $f_0 : M \to \mathcal{A}_*$ is homotopic to a holomorphic map $f : M \to \mathcal{A}_*$ such that $f\theta$ has vanishing periods, hence it defines a holomorphic null curve $\int f\theta : M \to \mathbb{C}^n$.

- **Runge approximation theorem:** If K is a compact Runge subset of M, then every conformal minimal immersion $K \to \mathbb{R}^n$ can be approximated by proper conformal minimal immersions $M \to \mathbb{R}^n$. The analogous result for null curves.

- **Isotopies:** Every conformal minimal immersion $M \to \mathbb{R}^n$ is regularly homotopic (in the space of of conformal minimal immersions) to the real part of a holomorphic null curve $M \to \mathbb{C}^n$.

General position theorems

- Every null curve $M \to \mathbb{C}^n$ ($n \geq 3$) can be approximated uniformly on compacts by \textit{(properly) embedded null curves} $M \hookrightarrow \mathbb{C}^n$.

 A. Alarcón, F. Forstnerič: Inventiones Math. 196 (2014)
General position theorems

- Every null curve \(M \to \mathbb{C}^n \) \((n \geq 3)\) can be approximated uniformly on compacts by (properly) embedded null curves \(M \hookrightarrow \mathbb{C}^n \).

 A. Alarcón, F. Forstnerič: Inventiones Math. 196 (2014)

- Every conformal minimal immersion \(M \to \mathbb{R}^n \) for \(n \geq 5 \) can be approximated by (proper) conformal minimal embeddings \(M \hookrightarrow \mathbb{R}^n \).

General position theorems

- Every null curve $M \rightarrow \mathbb{C}^n$ ($n \geq 3$) can be approximated uniformly on compacts by (properly) embedded null curves $M \hookrightarrow \mathbb{C}^n$.

 A. Alarcón, F. Forstnerič: Inventiones Math. 196 (2014)

- Every conformal minimal immersion $M \rightarrow \mathbb{R}^n$ for $n \geq 5$ can be approximated by (proper) conformal minimal embeddings $M \hookrightarrow \mathbb{R}^n$.

- Open Problems: Does every Riemann surface admit a proper conformal minimal embedding in \mathbb{R}^4?
General position theorems

- Every null curve $M \to \mathbb{C}^n$ ($n \geq 3$) can be approximated uniformly on compacts by (properly) embedded null curves $M \hookrightarrow \mathbb{C}^n$.

 A. Alarcón, F. Forstnerič: Inventiones Math. 196 (2014)

- Every conformal minimal immersion $M \to \mathbb{R}^n$ for $n \geq 5$ can be approximated by (proper) conformal minimal embeddings $M \hookrightarrow \mathbb{R}^n$.

- Open Problems: Does every Riemann surface admit a proper conformal minimal embedding in \mathbb{R}^4?
 Does it admit a proper holomorphic embedding in \mathbb{C}^2?

Assume now that M is a compact bordered Riemann surface.
Complete proper minimal surfaces

Assume now that M is a compact bordered Riemann surface.

Complete minimal surfaces with Jordan boundaries:

Every conformal minimal immersion $X_0: M \to \mathbb{R}^n$ ($n \geq 3$) can be approximated, uniformly on M, by continuous maps $X: M \to \mathbb{R}^n$ such that $X: \hat{M} \to \mathbb{R}^n$ is a complete conformal minimal immersion and $X: bM \to \mathbb{R}^n$ is a topological embedding. If $n \geq 5$ then $X: M \to \mathbb{R}^n$ can be chosen a topological embedding.
Complete proper minimal surfaces

Assume now that M is a compact bordered Riemann surface.

Complete minimal surfaces with Jordan boundaries:
Every conformal minimal immersion $X_0: M \to \mathbb{R}^n$ ($n \geq 3$) can be approximated, uniformly on M, by continuous maps $X: M \to \mathbb{R}^n$ such that $X: \hat{M} \to \mathbb{R}^n$ is a complete conformal minimal immersion and $X: \partial M \to \mathbb{R}^n$ is a topological embedding. If $n \geq 5$ then $X: M \to \mathbb{R}^n$ can be chosen a topological embedding.

Complete proper minimal surfaces in convex domains:
Let D be a convex domain in \mathbb{R}^n ($n \geq 3$). Every conformal minimal immersion $X_0: M \to D$ can be approximated, uniformly on compacts in \hat{M}, by proper complete conformal minimal immersions $X: \hat{M} \to D$. If D is bounded and strongly convex, then X can be chosen continuous on M (mapping ∂M to ∂D).
Complete proper minimal surfaces

Assume now that M is a compact bordered Riemann surface.

- **Complete minimal surfaces with Jordan boundaries:**
 Every conformal minimal immersion $X_0: M \to \mathbb{R}^n$ ($n \geq 3$) can be approximated, uniformly on M, by continuous maps $X: M \to \mathbb{R}^n$ such that $X: \mathring{M} \to \mathbb{R}^n$ is a complete conformal minimal immersion and $X: \partial M \to \mathbb{R}^n$ is a topological embedding. If $n \geq 5$ then $X: M \to \mathbb{R}^n$ can be chosen a topological embedding.

- **Complete proper minimal surfaces in convex domains:**
 Let D be a convex domain in \mathbb{R}^n ($n \geq 3$). Every conformal minimal immersion $X_0: M \to D$ can be approximated, uniformly on compacts in \mathring{M}, by proper complete conformal minimal immersions $X: \mathring{M} \to D$. If D is bounded and strongly convex, then X can be chosen continuous on M (mapping ∂M to ∂D).

Minimal surfaces in minimally convex domains in \(\mathbb{R}^3 \)

A domain \(D \subset \mathbb{R}^3 \) is \textbf{minimally convex} if it admits a smooth exhaustion function \(\rho \): \(D \to \mathbb{R} \) such that for every point \(x \in D \), the sum of the smallest two eigenvalues of \(\text{Hess}_\rho(x) \) is positive.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López, Minimal surfaces in minimally convex domains. arxiv:1510.04006
Minimal surfaces in minimally convex domains in \mathbb{R}^3

A domain $D \subset \mathbb{R}^3$ is **minimally convex** if it admits a smooth exhaustion function $\rho : D \to \mathbb{R}$ such that for every point $x \in D$, the sum of the smallest two eigenvalues of $\text{Hess}_\rho(x)$ is positive.

A domain D with C^2 boundary is minimally convex (also called **mean-convex**) if and only if $\kappa_1(x) + \kappa_2(x) \geq 0$ for each point $x \in \partial D$, where $\kappa_1(x), \kappa_2(x)$ are the principal curvatures of ∂D at x.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López, Minimal surfaces in minimally convex domains. arxiv:1510.04006
Minimal surfaces in minimally convex domains in \mathbb{R}^3

A domain $D \subset \mathbb{R}^3$ is **minimally convex** if it admits a smooth exhaustion function $\rho: D \to \mathbb{R}$ such that for every point $x \in D$, the sum of the smallest two eigenvalues of $\text{Hess}_\rho(x)$ is positive.

A domain D with C^2 boundary is minimally convex (also called **mean-convex**) if and only if $\kappa_1(x) + \kappa_2(x) \geq 0$ for each point $x \in bD$, where $\kappa_1(x), \kappa_2(x)$ are the principal curvatures of bD at x.

The following recent result is essentially optimal for domains in \mathbb{R}^3.
Minimal surfaces in minimally convex domains in \mathbb{R}^3

A domain $D \subset \mathbb{R}^3$ is **minimally convex** if it admits a smooth exhaustion function $\rho : D \to \mathbb{R}$ such that for every point $x \in D$, the sum of the smallest two eigenvalues of $\text{Hess}_\rho(x)$ is positive.

A domain D with C^2 boundary is minimally convex (also called **mean-convex**) if and only if $\kappa_1(x) + \kappa_2(x) \geq 0$ for each point $x \in \partial D$, where $\kappa_1(x), \kappa_2(x)$ are the principal curvatures of ∂D at x.

The following recent result is essentially optimal for domains in \mathbb{R}^3.

- If $D \subset \mathbb{R}^3$ is minimally convex, then every conformal minimal immersion $X : M \to D$ can be approximated, uniformly on compacts in \hat{M}, by proper complete conformal minimal immersions $\tilde{X} : \hat{M} \to D$. If ∂D is smooth and $\kappa_1(x) + \kappa_2(x) > 0$ for each point $x \in \partial D$ (such D is called a **strongly mean convex domain**), then \tilde{X} can be chosen continuous on M.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López, **Minimal surfaces in minimally convex domains.** arxiv:1510.04006
A domain $D \subset \mathbb{R}^3$ is **minimally convex** if it admits a smooth exhaustion function $\rho: D \to \mathbb{R}$ such that for every point $x \in D$, the sum of the smallest two eigenvalues of $\text{Hess}_\rho(x)$ is positive.

A domain D with C^2 boundary is minimally convex (also called **mean-convex**) if and only if $\kappa_1(x) + \kappa_2(x) \geq 0$ for each point $x \in \partial D$, where $\kappa_1(x), \kappa_2(x)$ are the principal curvatures of ∂D at x.

The following recent result is essentially optimal for domains in \mathbb{R}^3.

- If $D \subset \mathbb{R}^3$ is minimally convex, then every conformal minimal immersion $X: M \to D$ can be approximated, uniformly on compacts in \hat{M}, by proper complete conformal minimal immersions $\tilde{X}: \hat{M} \to D$. If ∂D is smooth and $\kappa_1(x) + \kappa_2(x) > 0$ for each point $x \in \partial D$ (such D is called a **strongly mean convex domain**), then \tilde{X} can be chosen continuous on M.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López, Minimal surfaces in minimally convex domains. arxiv:1510.04006
What about non-orientable minimal surfaces?

Assume that N is a non-orientable surface with a conformal structure.
What about non-orientable minimal surfaces?

Assume that N is a non-orientable surface with a conformal structure.

There is a 2-sheeted covering $\pi: M \to N$ by a Riemann surface M and a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$ (the deck transformation of π) such that $N = M/\mathcal{I}$.

Every conformal minimal immersion $Y: N \to \mathbb{R}^n$ lifts to an \mathcal{I}-invariant conformal minimal immersion $X: M \to \mathbb{R}^n$, i.e., $X \circ \mathcal{I} = X$.

Conversely, a \mathcal{I}-invariant conformal minimal immersion $X: M \to \mathbb{R}^n$ descends to a conformal minimal immersion $Y: N \to \mathbb{R}^n$.
What about non-orientable minimal surfaces?

Assume that \(N \) is a non-orientable surface with a conformal structure.

There is a 2-sheeted covering \(\pi : M \to N \) by a Riemann surface \(M \) and a fixed-point-free antiholomorphic involution \(\mathcal{I} : M \to M \) (the deck transformation of \(\pi \)) such that \(N = M / \mathcal{I} \).

Every conformal minimal immersion \(Y : N \to \mathbb{R}^n \) lifts to a \(\mathcal{I} \)-invariant conformal minimal immersion \(X : M \to \mathbb{R}^n \), i.e.,

\[
X \circ \mathcal{I} = X.
\]
What about non-orientable minimal surfaces?

Assume that N is a non-orientable surface with a conformal structure.

There is a 2-sheeted covering $\pi: M \to N$ by a Riemann surface M and a fixed-point-free antiholomorphic involution $\mathcal{J}: M \to M$ (the deck transformation of π) such that $N = M/\mathcal{J}$.

Every conformal minimal immersion $Y: N \to \mathbb{R}^n$ lifts to a \mathcal{J}-invariant conformal minimal immersion $X: M \to \mathbb{R}^n$, i.e.,

$$X \circ \mathcal{J} = X.$$

Conversely, a \mathcal{J}-invariant conformal minimal immersion $X: M \to \mathbb{R}^n$ descends to a conformal minimal immersion $Y: N \to \mathbb{R}^n$.

Main theorem for non-orientable minimal surfaces

Theorem (Alarcón, F., López; in preparation)

Let M be an open Riemann surface (or a bordered Riemann surface) with a fixed-point-free antiholomorphic involution \mathcal{I}. Then, all results mentioned above hold for \mathcal{I}-invariant conformal minimal immersions $M \rightarrow \mathbb{R}^n$. Hence, all mentioned results also hold for conformal minimal immersions $N \rightarrow \mathbb{R}^n$ from any non-orientable surface N endowed with a conformal structure (without having to change the conformal structure).
Main theorem for non-orientable minimal surfaces

Theorem (Alarcón, F., López; in preparation)

Let M be an open Riemann surface (or a bordered Riemann surface) with a fixed-point-free antiholomorphic involution \mathcal{I}.

Then, all results mentioned above hold for \mathcal{I}-invariant conformal minimal immersions $M \to \mathbb{R}^n$.

Hence, all mentioned results also hold for conformal minimal immersions $N \to \mathbb{R}^n$ from any non-orientable surface N endowed with a conformal structure (without having to change the conformal structure).
Theorem (Alarcón, F., López; in preparation)

Let M be an open Riemann surface (or a bordered Riemann surface) with a fixed-point-free antiholomorphic involution \mathcal{I}.

Then, all results mentioned above hold for \mathcal{I}-invariant conformal minimal immersions $M \to \mathbb{R}^n$.

Hence, all mentioned results also hold for conformal minimal immersions $N \to \mathbb{R}^n$ from any non-orientable surface N endowed with a conformal structure (without having to change the conformal structure).
Tools: \mathcal{J}-invariant functions, 1-forms, and sprays

Definition

A holomorphic function $f \in \mathcal{O}(M)$ is \mathcal{J}-invariant if

$$f \circ \mathcal{J} = \bar{f}.$$
Tools: \mathcal{J}-invariant functions, 1-forms, and sprays

Definition

A holomorphic function $f \in \mathcal{O}(M)$ is \mathcal{J}-invariant if

$$f \circ \mathcal{J} = \bar{f}.$$

A holomorphic 1-form ϕ on M is \mathcal{J}-invariant if

$$\mathcal{J}^* \phi = \bar{\phi}.$$

Notation: $\mathcal{O}_\mathcal{J}(M), \Omega_\mathcal{J}(M)$.

Definition

A holomorphic function \(f \in \mathcal{O}(M) \) is \(\mathcal{I} \)-invariant if

\[
f \circ \mathcal{I} = \overline{f}.
\]

A holomorphic 1-form \(\phi \) on \(M \) is \(\mathcal{I} \)-invariant if

\[
\mathcal{I}^* \phi = \overline{\phi}.
\]

Notation: \(\mathcal{O}_\mathcal{I}(M), \Omega_\mathcal{I}(M) \).

Clearly, a function \(f = u + iv : M \to \mathbb{C} \) belongs to \(\mathcal{O}_\mathcal{I}(M) \) iff \(u, v : M \to \mathbb{R} \) are conjugate harmonic functions satisfying

\[
u \circ \mathcal{I} = -v.
\]
Definition
A holomorphic function $f \in \mathcal{O}(M)$ is \mathcal{J}-invariant if
\[f \circ \mathcal{J} = \bar{f}. \]
A holomorphic 1-form ϕ on M is \mathcal{J}-invariant if
\[\mathcal{J}^* \phi = \bar{\phi}. \]

Notation: $\mathcal{O}_\mathcal{J}(M), \Omega_\mathcal{J}(M)$.

Clearly, a function $f = u + iv : M \to \mathbb{C}$ belongs to $\mathcal{O}_\mathcal{J}(M)$ iff $u, v : M \to \mathbb{R}$ are conjugate harmonic functions satisfying
\[u \circ \mathcal{J} = u, \quad v \circ \mathcal{J} = -v. \]

For every $f \in \mathcal{O}(M)$ we have that $\bar{f} \circ \mathcal{J} \in \mathcal{O}(M)$ and
\[f + \bar{f} \circ \mathcal{J} \in \mathcal{O}_\mathcal{J}(M). \]
Invariant sprays

Let $\mathbb{B}^N \subset \mathbb{C}^N$ be the unit ball and $r > 0$.
Invariant sprays

Let $\mathbb{B}^N \subset \mathbb{C}^N$ be the unit ball and $r > 0$.

Definition

A holomorphic spray of maps $F : M \times r\mathbb{B}^N \to \mathbb{C}^n$ is \mathcal{J}-invariant if

$$F(\mathcal{J}p, \bar{z}) = \overline{F(p, z)}, \quad p \in M, \ z \in r\mathbb{B}^N.$$
Invariant sprays

Let $B^N \subset C^N$ be the unit ball and $r > 0$.

Definition

A holomorphic spray of maps $F : M \times rB^N \rightarrow C^n$ is \mathcal{I}-invariant if

$$F(\mathcal{I}p, z) = \overline{F(p, z)}, \quad p \in M, \ z \in rB^N.$$

Note that $F(\cdot, z) : M \rightarrow C^n$ is \mathcal{I}-invariant if $z \in \mathbb{R}^N \subset C^N$.

Invariant sprays

Let $\mathbb{B}^N \subset \mathbb{C}^N$ be the unit ball and $r > 0$.

Definition

A holomorphic spray of maps $F : M \times r\mathbb{B}^N \to \mathbb{C}^n$ is \mathcal{J}-invariant if

$$F(\mathcal{J}p, \bar{z}) = \overline{F(p, z)}, \quad p \in M, \ z \in r\mathbb{B}^N.$$

Note that $F(\cdot, z) : M \to \mathbb{C}^n$ is \mathcal{J}-invariant if $z \in \mathbb{R}^N \subset \mathbb{C}^N$.

Example

If V is a holomorphic vector field on \mathbb{C}^n which is real on \mathbb{R}^n, then its flow satisfies $\phi_t(\bar{z}) = \overline{\phi_t(z)}$. Let V_1, \ldots, V_N be holomorphic vector fields on \mathbb{C}^n which are real on \mathbb{R}^n, and let ϕ^j_t denote the flow of V_j. Given a \mathcal{J}-invariant holomorphic map $X : M \to \mathbb{C}^n$, the map

$$F(p, t_1, \ldots, t_N) = \phi^1_{t_1} \circ \cdots \circ \phi^N_{t_N} (X(p))$$

is a \mathcal{J}-invariant holomorphic spray of maps $M \to \mathbb{C}^n$.
Lemma

Let \((M, \mathcal{I})\) be a bordered Riemann surface with a fixed-point-free involution \(\mathcal{I}: M \to M\). The exists a Runge homology basis \(\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-\) for \(H_1(M, \mathbb{Z})\), where

\[
\mathcal{B}^+ = \{\delta_1, \ldots, \delta_l\}, \quad \mathcal{B}^- = \{\mathcal{I}(\delta_2), \ldots, \mathcal{I}(\delta_l)\}, \quad \mathcal{I}_*\delta_1 = \delta_1.
\]
Lemma

Let \((M, \mathcal{I})\) be a bordered Riemann surface with a fixed-point-free involution \(\mathcal{I} : M \to M\). The exists a Runge homology basis \(\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-\) for \(H_1(M, \mathbb{Z})\), where

\[
\mathcal{B}^+ = \{\delta_1, \ldots, \delta_l\}, \quad \mathcal{B}^- = \{\mathcal{I}(\delta_2), \ldots, \mathcal{I}(\delta_l)\}, \quad \mathcal{I} \ast \delta_1 = \delta_1.
\]

Denote by \(E\) the union of supports of the curves in \(\mathcal{B}\). The Runge property means that \(M \subset E\) has no relatively compact connected components. This guarantees Mergelyan approximation on \(E\).
Lemma

Let (M, \mathcal{I}) be a bordered Riemann surface with a fixed-point-free involution $\mathcal{I}: M \to M$. The exists a Runge homology basis $\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-$ for $H_1(M, \mathbb{Z})$, where

$$\mathcal{B}^+ = \{\delta_1, \ldots, \delta_l\}, \quad \mathcal{B}^- = \{\mathcal{I}(\delta_2), \ldots, \mathcal{I}(\delta_l)\}, \quad \mathcal{I}^*\delta_1 = \delta_1.$$

Denote by E the union of supports of the curves in \mathcal{B}. The Runge property means that $M \subset E$ has no relatively compact connected components. This guarantees Mergelyan approximation on E.

Let $\mathcal{P}^+ = (\mathcal{P}^+_1, \ldots, \mathcal{P}^+_l): \mathcal{O}(M) \to \mathbb{C}^l$ denote the period map given by

$$\mathcal{P}^+_j(f) = \int_{\delta_j} f\theta, \quad f \in \mathcal{O}(M), \ j = 1, \ldots, l.$$

Similarly, we define $\mathcal{P}^+ (\phi) = (\int_{\delta_j} \phi)_{j=1,\ldots,l}$ for a holomorphic 1-form ϕ.
Lemma (1)

Let ϕ be a \mathcal{I}-invariant holomorphic 1-form on M. Then:

(a) ϕ is exact if and only if $\mathcal{P}^+(\phi) = 0$.
(b) $\Re \phi$ is exact if and only if $\Re \mathcal{P}^+(\phi) = 0$.
Lemma (1)

Let \(\phi \) be a \(\mathcal{I} \)-invariant holomorphic 1-form on \(M \). Then:

(a) \(\phi \) is exact if and only if \(\mathcal{P}^+(\phi) = 0 \).

(b) \(\Re \phi \) is exact if and only if \(\Re \mathcal{P}^+(\phi) = 0 \).

Proof. (a) By \(\mathcal{I} \)-invariance of \(\phi \) we have

\[
\int_{\mathcal{I}_*\delta_j} \phi = \int_{\delta_j} \mathcal{I}^*\phi = \int_{\delta_j} \overline{\phi}, \quad j = 1, \ldots, l.
\]

Therefore, \(\mathcal{P}^+(\phi) = 0 \) implies that \(\phi \) has vanishing periods over all curves in \(\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^- \), and hence it is exact. The converse is obvious.
Lemma (1)

Let ϕ be a \mathcal{I}-invariant holomorphic 1-form on M. Then:

(a) ϕ is exact if and only if $\mathcal{P}^+(\phi) = 0$.
(b) $\Re \phi$ is exact if and only if $\Re \mathcal{P}^+(\phi) = 0$.

Proof. (a) By \mathcal{I}-invariance of ϕ we have

$$\int_{\mathcal{I}_* \delta_j} \phi = \int_{\delta_j} \mathcal{I}^* \phi = \int_{\delta_j} \bar{\phi}, \quad j = 1, \ldots, l.$$

Therefore, $\mathcal{P}^+(\phi) = 0$ implies that ϕ has vanishing periods over all curves in $\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-$, and hence it is exact. The converse is obvious.

(b) Likewise, $\mathcal{R} \mathcal{P}^+(\phi) = 0$ implies that $\Re \phi$ is exact. The imaginary periods $\Im \mathcal{P}^+(\phi)$ (the flux of ϕ) can be arbitrary subject to the conditions

$$\int_{\mathcal{I}_* \delta_j} \Im \phi = - \int_{\delta_j} \Im \phi, \quad j = 1, \ldots, l.$$

In particular, $\int_{\delta_1} \Im \phi = 0$ since $\mathcal{I}_* \delta_1 = \delta_1$.
Lemma (2)

Let $\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-$ be a homology basis of $H_1(M, \mathbb{Z})$ as above, and let $\mathcal{P}^+: \mathcal{A}(M, \mathbb{C}^n) \to (\mathbb{C}^n)^l$ denote the period map associated to \mathcal{B}^+:

$$\mathcal{P}^+(f) = \left(\int_{\gamma_i} f \theta\right)_{i=1,\ldots,l} \in (\mathbb{C}^n)^l.$$
Lemma (2)

Let $\mathcal{B} = \mathcal{B}^+ \cup \mathcal{B}^-$ be a homology basis of $H_1(M, \mathbb{Z})$ as above, and let $\mathcal{P}^+: \mathcal{A}(M, \mathbb{C}^n) \rightarrow (\mathbb{C}^n)^l$ denote the period map associated to \mathcal{B}^+:

$$\mathcal{P}^+(f) = \left(\int_{\gamma_i} f \theta \right)_{i=1,...,l} \in (\mathbb{C}^n)^l.$$

For every nonflat, \mathcal{I}-invariant map $f: M \rightarrow \mathcal{A}_*$ of class $\mathcal{A}(M)$ there exists a dominating \mathcal{I}-invariant spray $F: M \times \mathbb{R}^N \rightarrow \mathcal{A}_*$ of class $\mathcal{A}(M)$ which is also period dominating, in the sense that the differential

$$\frac{\partial}{\partial \zeta} \bigg|_{\zeta=0} \mathcal{P}^+(F(\cdot, \zeta)): \mathbb{C}^N \rightarrow (\mathbb{C}^n)^l$$

maps \mathbb{R}^N (the real part of \mathbb{C}^N) surjective onto $\mathbb{R}^n \times (\mathbb{C}^n)^{l-1}$.
Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

(Very) special Cartan pairs
(Very) special Cartan pairs

Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

A pair (A, B) of compact sets in M is a \mathcal{I}-invariant Cartan pair if

- the sets A, B, $A \cap B$, and $A \cup B$ are \mathcal{I}-invariant with C^1 boundaries;
- $A \setminus B \cap B \setminus A = \emptyset$ (the separation property).

A \mathcal{I}-invariant Cartan pair (A, B) is special if $B = B' \cup \mathcal{I}(B')$, where B' is a compact set with C^1 boundary in M and $B' \cap \mathcal{I}(B') = \emptyset$.

A special Cartan pair (A, B) is very special if the sets B' and $A \cap B'$ are discs. (Of course $\mathcal{I}(B')$ and $A \cap \mathcal{I}(B')$ are then also discs.)
Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

A pair (A, B) of compact sets in M is a \textit{\mathcal{I}-invariant Cartan pair} if

(a) the sets A, B, $A \cap B$ and $A \cup B$ are \mathcal{I}-invariant with C^1 boundaries;
Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

A pair (A, B) of compact sets in M is a \mathcal{I}-invariant Cartan pair if

(a) the sets A, B, $A \cap B$ and $A \cup B$ are \mathcal{I}-invariant with C^1 boundaries;

(b) $\overline{A \setminus B} \cap \overline{B \setminus A} = \emptyset$ (the separation property).
Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

A pair (A, B) of compact sets in M is a \mathcal{I}-invariant Cartan pair if

(a) the sets A, B, $A \cap B$ and $A \cup B$ are \mathcal{I}-invariant with \mathcal{C}^1 boundaries;

(b) $\overline{A \setminus B} \cap \overline{B \setminus A} = \emptyset$ (the separation property).

A \mathcal{I}-invariant Cartan pair (A, B) is special if $B = B' \cup \mathcal{I}(B')$, where B' is a compact set with \mathcal{C}^1 boundary in M and $B' \cap \mathcal{I}(B') = \emptyset$.

A special Cartan pair (A, B) is very special if the sets B' and $A \cap B'$ are discs. (Of course $\mathcal{I}(B')$ and $A \cap \mathcal{I}(B')$ are then also discs.)
(Very) special Cartan pairs

Definition

Let M be an open Riemann surface with a fixed-point-free antiholomorphic involution $\mathcal{I}: M \to M$.

A pair (A, B) of compact sets in M is a \mathcal{I}-invariant Cartan pair if

(a) the sets $A, B, A \cap B$ and $A \cup B$ are \mathcal{I}-invariant with C^1 boundaries;

(b) $\overline{A \setminus B} \cap \overline{B \setminus A} = \emptyset$ (the separation property).

A \mathcal{I}-invariant Cartan pair (A, B) is special if $B = B' \cup \mathcal{I}(B')$, where B' is a compact set with C^1 boundary in M and $B' \cap \mathcal{I}(B') = \emptyset$.

A special Cartan pair (A, B) is very special if the sets B' and $A \cap B'$ are discs. (Of course $\mathcal{I}(B')$ and $A \cap \mathcal{I}(B')$ are then also discs.)
Lemma (3)

Let \((M, \mathcal{I})\) be as above. Assume that

- \((A, B)\) is a special \(\mathcal{I}\)-invariant Cartan pair in \(M\),
- \(\epsilon > 0\) and \(r > 0\) are real number, and
- \(F : A \times rB^N \to A_*\) is a \(\mathcal{I}\)-invariant spray of class \(\mathcal{A}(A)\) which is dominating over the set \(C = A \cap B\).
Lemma (3)

Let \((M, \mathcal{I})\) be as above. Assume that

- \((A, B)\) is a special \(\mathcal{I}\)-invariant Cartan pair in \(M\),
- \(\epsilon > 0\) and \(r > 0\) are real number, and
- \(F : A \times r\mathbb{B}^N \rightarrow \mathcal{A}_*\) is a \(\mathcal{I}\)-invariant spray of class \(\mathcal{A}(A)\) which is dominating over the set \(C = A \cap B\).

Then, there exist \(\delta > 0\) and \(r' \in (0, r)\) such that for every \(\mathcal{I}\)-invariant spray \(G : B \times r\mathbb{B}^N \rightarrow \mathcal{A}_*\) of class \(\mathcal{A}(B)\) satisfying

\[
\|F - G\|_{0, C \times r\mathbb{B}^N} < \delta
\]

there is a \(\mathcal{I}\)-invariant spray \(H : (A \cup B) \times r'\mathbb{B}^N \rightarrow \mathcal{A}_*\) of class \(\mathcal{A}(A \cup B)\) satisfying

\[
\|H - F\|_{0, A \times r'\mathbb{B}^N} < \epsilon.
\]
Lemma (4)

Let \((M, \mathcal{I})\) be as above, and let \((A, B)\) be a very special \(\mathcal{I}\)-invariant Cartan pair in \(M\). Let \(\mathcal{P}^+\) denote the period map on \(A\) (Lemma 2).
Lemma (4)

Let \((M, \mathcal{I})\) be as above, and let \((A, B)\) be a very special \(\mathcal{I}\)-invariant Cartan pair in \(M\). Let \(\mathcal{P}^+\) denote the period map on \(A\) (Lemma 2).

Every \(\mathcal{I}\)-invariant map \(f : A \to A_*\) of class \(\mathcal{A}(A)\) can be approximated uniformly on \(A\) by \(\mathcal{I}\)-invariant holomorphic maps \(\tilde{f} : A \cup B \to A_*\) satisfying \(\mathcal{P}^+(\tilde{f}) = \mathcal{P}^+(f)\).
Basic approximation lemma for \mathcal{I}-invariant maps

Lemma (4)

Let (M,\mathcal{I}) be as above, and let (A, B) be a **very special** \mathcal{I}-invariant Cartan pair in M. Let \mathcal{P}^+ denote the period map on A (Lemma 2).

Every \mathcal{I}-invariant map $f : A \to A_*$ of class $\mathcal{A}(A)$ can be approximated uniformly on A by \mathcal{I}-invariant holomorphic maps $\tilde{f} : A \cup B \to A_*$ satisfying $\mathcal{P}^+(\tilde{f}) = \mathcal{P}^+(f)$.

Proof. By Lemma 2, there exists a \mathcal{I}-invariant dominating and period dominating spray $F : A \times r\mathbb{B}^N \to A_*$ of class $\mathcal{A}(A)$ with $F(\cdot, 0) = f$.
Lemma (4)

Let \((M, \mathcal{I})\) be as above, and let \((A, B)\) be a very special \(\mathcal{I}\)-invariant Cartan pair in \(M\). Let \(P^+\) denote the period map on \(A\) (Lemma 2).

Every \(\mathcal{I}\)-invariant map \(f: A \to A_*\) of class \(\mathcal{A}(A)\) can be approximated uniformly on \(A\) by \(\mathcal{I}\)-invariant holomorphic maps \(\tilde{f}: A \cup B \to A_*\) satisfying \(P^+(\tilde{f}) = P^+(f)\).

Proof. By Lemma 2, there exists a \(\mathcal{I}\)-invariant dominating and period dominating spray \(F: A \times rB^n \to A_*\) of class \(\mathcal{A}(A)\) with \(F(\cdot, 0) = f\).

By the definition of a very special Cartan pair, \(B = B' \cup \mathcal{I}(B')\) is the union of two disjoint disks, and \(C' = A \cap B' \subset B'\) is a disk.
Basic approximation lemma for \mathcal{I}-invariant maps

Lemma (4)

Let (M, \mathcal{I}) be as above, and let (A, B) be a very special \mathcal{I}-invariant Cartan pair in M. Let \mathcal{P}^+ denote the period map on A (Lemma 2).

Every \mathcal{I}-invariant map $f : A \to A_*$ of class $\mathcal{A}(A)$ can be approximated uniformly on A by \mathcal{I}-invariant holomorphic maps $\tilde{f} : A \cup B \to A_*$ satisfying $\mathcal{P}^+(\tilde{f}) = \mathcal{P}^+(f)$.

Proof. By Lemma 2, there exists a \mathcal{I}-invariant dominating and period dominating spray $F : A \times r\mathbb{B}^N \to A_*$ of class $\mathcal{A}(A)$ with $F(\cdot, 0) = f$.

By the definition of a very special Cartan pair, $B = B' \cup \mathcal{I}(B')$ is the union of two disjoint disks, and $C' = A \cap B' \subset B'$ is a disk.

Pick a number $r' \in (0, r)$.

Since A_* is an Oka manifold, it is possible to approximate F, uniformly on $C' \times r'\mathbb{B}^N$, by a holomorphic spray $G : B' \times r'\mathbb{B}^N \to A_*$.

Proof of Lemma 4

We extend G to $\mathcal{I}(B') \times r'B^N$ by symmetrizing:

$$G(p, \zeta) = G(\mathcal{I}(p), \bar{\zeta}) \quad \text{for } p \in \mathcal{I}(B') \text{ and } \zeta \in r'B^N.$$

It follows that G is an \mathcal{I}-invariant spray on $B \times r'B^N$ with values in A_\ast.
Proof of Lemma 4

We extend G to $\mathcal{I}(B') \times r' B^N$ by symmetrizing:

$$G(p, \zeta) = G(\mathcal{I}(p), \bar{\zeta}) \quad \text{for } p \in \mathcal{I}(B') \text{ and } \zeta \in r' B^N.$$

It follows that G is an \mathcal{I}-invariant spray on $B \times r' B^N$ with values in A_*. By Lemma 3, there is $r'' \in (0, r')$ such that, if G is sufficiently close to F on $(A \cap B) \times r' B^N$, then there is a \mathcal{I}-invariant spray $H: (A \cup B) \times r'' B^N \to A_*$ which approximates F on $A \times r'' B^N$.

Proof of Lemma 4

We extend G to $\mathcal{I}(B') \times r'\mathbb{B}^N$ by symmetrizing:

$$G(p, \zeta) = G(\mathcal{I}(p), \bar{\zeta}) \quad \text{for } p \in \mathcal{I}(B') \text{ and } \zeta \in r'\mathbb{B}^N.$$

It follows that G is an \mathcal{I}-invariant spray on $B \times r'\mathbb{B}^N$ with values in A_*. By Lemma 3, there is $r'' \in (0, r')$ such that, if G is sufficiently close to F on $(A \cap B) \times r'\mathbb{B}^N$, then there is a \mathcal{I}-invariant spray $H: (A \cup B) \times r''\mathbb{B}^N \to A_*$ which approximates F on $A \times r''\mathbb{B}^N$.

If the approximation is sufficiently close, the period domination property of F implies that there exists $\zeta \in r''\mathbb{B}^N \cap \mathbb{R}^N$ such that the \mathcal{I}-invariant map $\tilde{f} = H(\cdot, \zeta): A \cup B \to A_*$ satisfies the condition $\mathcal{P}^+(f) = \mathcal{P}^+(\tilde{f})$.
Proof of Lemma 4

We extend G to $\mathcal{I}(B') \times r'\mathbb{B}^N$ by symmetrizing:

$$G(p, \zeta) = G(\mathcal{I}(p), \bar{\zeta}) \quad \text{for} \quad p \in \mathcal{I}(B') \quad \text{and} \quad \zeta \in r'\mathbb{B}^N.$$

It follows that G is an \mathcal{I}-invariant spray on $B \times r'\mathbb{B}^N$ with values in \mathcal{A}_*. By Lemma 3, there is $r'' \in (0, r')$ such that, if G is sufficiently close to F on $(A \cap B) \times r'\mathbb{B}^N$, then there is a \mathcal{I}-invariant spray $H: (A \cup B) \times r''\mathbb{B}^N \to \mathcal{A}_*$ which approximates F on $A \times r''\mathbb{B}^N$.

If the approximation is sufficiently close, the period domination property of F implies that there exists $\zeta \in r''\mathbb{B}^N \cap \mathbb{R}^N$ such that the \mathcal{I}-invariant map $\tilde{f} = H(\cdot, \zeta): A \cup B \to \mathcal{A}_*$ satisfies the condition $\mathcal{P}^+(f) = \mathcal{P}^+(\tilde{f})$.

This proves Lemma 4. \square
Change of topology of the domain

Attach to a domain $A \subset M$ a smooth arc E (or a couple of arcs $E = E_1 \cup E_2$ with $\mathcal{J}(E_1) = E_2$ and $E_1 \cap E_2 = \emptyset$) and proceed as follows.

1. Extend the derivative $f = \partial_X/\theta$ from A to a map $f : A \cup E \to A^*$ such that $f \circ \mathcal{J} = f$ and $\int_E \mathcal{R}(f \theta)$ has a correct value (to satisfy the period vanishing condition if E closes to a nontrivial loop in $A \cup E$).

2. Embed f into a period-dominating (\mathcal{J}-invariant) holomorphic spray $F : (A \cup E) \times \mathbb{B}_N \to A^*$ with $F(\cdot, 0) = f$.

3. Approximate F by a holomorphic spray $\tilde{F} : D \times \mathbb{B}_N \to A^*$ on a neighborhood D of $A \cup E$. The period domination of F ensures that there is a value $\zeta_0 \in \mathbb{B}_N \cap \mathbb{R}_N$ such that $\tilde{F}(\cdot, \zeta_0)$ integrates to a conformal minimal immersion $D \to \mathbb{R}^n$.

4. In the non-orientable case, choose a neighborhood V_1 of the arc E_1, approximate F over $(A \cup E) \cap V_1$ by a spray G over V_1, define G on $\mathcal{J}(V_1) \supset E_2$ by $G(p, \zeta) = G(\mathcal{J}(p), \bar{\zeta})$, and glue F and G into an \mathcal{J}-invariant spray over a neighborhood of $A \cup E$. Finish as before.
Change of topology of the domain

Attach to a domain $A \subset M$ a smooth arc E (or a couple of arcs $E = E_1 \cup E_2$ with $\mathcal{I}(E_1) = E_2$ and $E_1 \cap E_2 = \emptyset$) and proceed as follows.

1. Extend the derivative $f = 2\partial X/\theta$ from A to a map $f : A \cup E \to \mathcal{A}_*$ such that $f \circ \mathcal{I} = \overline{f}$ and $\int_E \mathcal{R}(f \theta)$ has a correct value (to satisfy the period vanishing condition if E closes to a nontrivial loop in $A \cup E$).
Change of topology of the domain

Attach to a domain $A \subset M$ a smooth arc E (or a couple of arcs $E = E_1 \cup E_2$ with $\mathcal{I}(E_1) = E_2$ and $E_1 \cap E_2 = \emptyset$) and proceed as follows.

1. Extend the derivative $f = 2\partial X/\theta$ from A to a map $f : A \cup E \to \mathcal{A}_*$ such that $f \circ \mathcal{I} = \overline{f}$ and $\int_E \Re(f \theta)$ has a correct value (to satisfy the period vanishing condition if E closes to a nontrivial loop in $A \cup E$).

2. Embed f into a period-dominating (\mathcal{I}-invariant) holomorphic spray $F : (A \cup E) \times rB^N \to \mathcal{A}_*$ with $F(\cdot, 0) = f$.
Attach to a domain $A \subset M$ a smooth arc E (or a couple of arcs $E = E_1 \cup E_2$ with $\mathcal{I}(E_1) = E_2$ and $E_1 \cap E_2 = \emptyset$) and proceed as follows.

1. Extend the derivative $f = 2\partial X / \theta$ from A to a map $f: A \cup E \to A_*$ such that $f \circ \mathcal{I} = \tilde{f}$ and $\int_E \mathcal{R}(f \theta)$ has a correct value (to satisfy the period vanishing condition if E closes to a nontrivial loop in $A \cup E$).

2. Embed f into a period-dominating (\mathcal{I}-invariant) holomorphic spray $F: (A \cup E) \times rB^N \to A_*$ with $F(\cdot, 0) = f$.

3. Approximate F by a holomorphic spray $\tilde{F}: D \times rB^N \to A_*$ on a neighborhood D of $A \cup E$. The period domination of F ensures that there is a value $\zeta_0 \in rB^N \cap \mathbb{R}^N$ such that $\tilde{F}(\cdot, \zeta_0)$ integrates to a conformal minimal immersion $D \to \mathbb{R}^n$.
Change of topology of the domain

Attach to a domain $A \subset M$ a smooth arc E (or a couple of arcs $E = E_1 \cup E_2$ with $\mathcal{I}(E_1) = E_2$ and $E_1 \cap E_2 = \emptyset$) and proceed as follows.

1. Extend the derivative $f = 2\partial X/\theta$ from A to a map $f : A \cup E \to A^*$ such that $f \circ \mathcal{I} = \tilde{f}$ and $\int_E \mathcal{R}(f\theta)$ has a correct value (to satisfy the period vanishing condition if E closes to a nontrivial loop in $A \cup E$).

2. Embed f into a period-dominating (\mathcal{I}-invariant) holomorphic spray $F : (A \cup E) \times r\mathbb{B}^N \to A^*$ with $F(\cdot, 0) = f$.

3. Approximate F by a holomorphic spray $\tilde{F} : D \times r\mathbb{B}^N \to A^*$ on a neighborhood D of $A \cup E$. The period domination of F ensures that there is a value $\zeta_0 \in r\mathbb{B}^N \cap \mathbb{R}^N$ such that $\tilde{F}(\cdot, \zeta_0)$ integrates to a conformal minimal immersion $D \to \mathbb{R}^n$.

4. In the non-orientable case, choose a neighborhood V_1 of the arc E_1, approximate F over $(A \cup E) \cap V_1$ by a spray G over V_1, define G on $\mathcal{I}(V_1) \supset E_2$ by $G(p, \zeta) = G(\mathcal{I}(p), \tilde{\zeta})$, and glue F and G into an \mathcal{I}-invariant spray over a neighborhood of $A \cup E$. Finish as before.
The **Runge-Mergelyan approximation theorem** and the **Oka principle for conformal minimal immersions** (both in the orientable and non-orientable case) are proved by using Lemmas 1–4, together with the analysis at critical points of a strongly subharmonic exhaustion function on M as explained above.
The Runge-Mergelyan approximation theorem and the Oka principle for conformal minimal immersions (both in the orientable and non-orientable case) are proved by using Lemmas 1–4, together with the analysis at critical points of a strongly subharmonic exhaustion function on M as explained above.

To obtain complete bounded conformal minimal surfaces in \mathbb{R}^n (including those with Jordan boundaries), and proper conformal minimal surfaces in (minimally) convex domains, we also use approximate solutions to the Riemann-Hilbert boundary value problem for conformal minimal surfaces and holomorphic null curves.
Assume that M is a compact bordered Riemann surface and $X: M \to \mathbb{R}^n$ ($n \geq 3$) is a conformal minimal immersion. Let $I \subset bM$ be an arc.

Let $Y: bM \times \overline{D} \to \mathbb{R}^n$ be a continuous map of the form

$$Y(p, \zeta) = X(p) + f(p, \zeta)u + g(p, \zeta)v, \quad p \in I, \quad \zeta \in \overline{D},$$

where $u, v \in \mathbb{R}^n$ is an orthonormal pair, $F(p, \cdot) = f(p, \cdot) + ig(p, \cdot)$ is a holomorphic immersion for each $p \in I$, and $F(p, \cdot) = 0$ for $p \in bM \setminus I$.

Then, we can find conformal minimal immersions $\tilde{X}: M \to \mathbb{R}^n$ such that

- \tilde{X} approximates X outside a small neighbourhood of I in M;
- $\tilde{X}(M)$ lies close to $X(M) \cup \bigcup_{p \in I} Y(p, \overline{D})$;
- $\tilde{X}(p)$ lies close to the curve $Y(p, b\overline{D})$ for every $p \in I$;
- $\text{Flux}(\tilde{X}) = \text{Flux}(X)$.

THANK YOU FOR YOUR ATTENTION
Appendix A: Curvature of surfaces in \mathbb{R}^n

Assume that D is a domain in $\mathbb{R}^2_{(u_1,u_2)}$ and $X = (X_1, \ldots, X_n): D \to \mathbb{R}^n$ is a C^2 immersion. Let $S = X(D) \subset \mathbb{R}^n$, a parametrized surface in \mathbb{R}^n.

Consider a smooth embedded curve in S, $\lambda(t) = X(u_1(t), u_2(t)) \in S$. Let $s = s(t)$ denote the arc length on λ. The number $\kappa(T, N) = d^2\lambda ds^2 \cdot N$ is the normal curvature of S at $p = \lambda(t) \in S$ in the tangent direction $T = \lambda'(s) \in T_p S$ with respect to the normal vector $N \in N_p S$.

In terms of t-derivatives we get $\kappa(T, N) = \sum_{i,j=1}^2 (X_{u_i} u_j \cdot N) \frac{\dot{u}_i}{\dot{s}} \frac{\dot{u}_j}{\dot{s}} = \text{second fundamental form}$ $\sum_{i,j=1}^2 (g_{u_i} u_j) \frac{\dot{u}_i}{\dot{s}} \frac{\dot{u}_j}{\dot{s}} = \text{first fundamental form}$.
Appendix A: Curvature of surfaces in \mathbb{R}^n

Assume that D is a domain in $\mathbb{R}^2_{(u_1, u_2)}$ and $X = (X_1, \ldots, X_n): D \to \mathbb{R}^n$ is a C^2 immersion. Let $S = X(D) \subset \mathbb{R}^n$, a parametrized surface in \mathbb{R}^n. Consider a smooth embedded curve in S,

$$\lambda(t) = X(u_1(t), u_2(t)) \in S.$$

Let $s = s(t)$ denote the arc length on λ. The number

$$\kappa(T, N) := \frac{d^2\lambda}{ds^2} \cdot N = \sum_{i,j=1}^{2} \left(X_{u_i u_j} \cdot N \right) \frac{du_i}{ds} \frac{du_j}{ds}$$

is the normal curvature of S at $p = \lambda(t) \in S$ in the tangent direction $T = \lambda'(s) \in T_p S$ with respect to the normal vector $N \in N_p S$.

Appendix A: Curvature of surfaces in \mathbb{R}^n

Assume that D is a domain in $\mathbb{R}^2(u_1, u_2)$ and $X = (X_1, \ldots, X_n): D \to \mathbb{R}^n$ is a C^2 immersion. Let $S = X(D) \subset \mathbb{R}^n$, a parametrized surface in \mathbb{R}^n. Consider a smooth embedded curve in S,

$$\lambda(t) = X(u_1(t), u_2(t)) \in S.$$

Let $s = s(t)$ denote the arc length on λ. The number

$$\kappa(T, N) := \frac{d^2 \lambda}{ds^2} \cdot N = \sum_{i, j=1}^{2} \left(X_{u_i u_j} \cdot N \right) \frac{du_i}{ds} \frac{du_j}{ds}$$

is the **normal curvature** of S at $p = \lambda(t) \in S$ in the tangent direction $T = \lambda'(s) \in T_pS$ with respect to the normal vector $N \in N_pS$.

In terms of t-derivatives we get

$$\kappa(T, N) = \frac{\sum_{i, j=1}^{2} \left(X_{u_i u_j} \cdot N \right) \dot{u}_i \dot{u}_j}{\sum_{i, j=1}^{2} g_{i, j} \dot{u}_i \dot{u}_j} = \frac{\text{second fundamental form}}{\text{first fundamental form}}$$
The principal curvature and the mean curvature

Fix a normal vector $\mathbf{N} \in N_p S$ and vary the unit tangent vector $\mathbf{T} \in T_p S$. The **principal curvatures** of S at p in direction \mathbf{N} are the numbers

$$
\kappa_1(\mathbf{N}) = \max_{\mathbf{T}} \kappa(\mathbf{T}, \mathbf{N}), \quad \kappa_2(\mathbf{N}) = \min_{\mathbf{T}} \kappa(\mathbf{T}, \mathbf{N}).
$$

Their average

$$
H(\mathbf{N}) = \frac{\kappa_1(\mathbf{N}) + \kappa_2(\mathbf{N})}{2} \in \mathbb{R}
$$

is the **mean curvature** of S at p in the normal direction $\mathbf{N} \in N_p S$.

The principal curvature and the mean curvature

Fix a normal vector $\mathbf{N} \in N_p S$ and vary the unit tangent vector $\mathbf{T} \in T_p S$. The **principal curvatures** of S at p in direction \mathbf{N} are the numbers

$$\kappa_1(\mathbf{N}) = \max_{\mathbf{T}} \kappa(\mathbf{T}, \mathbf{N}), \quad \kappa_2(\mathbf{N}) = \min_{\mathbf{T}} \kappa(\mathbf{T}, \mathbf{N}).$$

Their average

$$H(\mathbf{N}) = \frac{\kappa_1(\mathbf{N}) + \kappa_2(\mathbf{N})}{2} \in \mathbb{R}$$

is the **mean curvature** of S at p in the normal direction $\mathbf{N} \in N_p S$.

Let $G = (g_{i,j})$ and $h(\mathbf{N}) = (h_{i,j}(\mathbf{N})) = (X_{u_i u_j} \cdot \mathbf{N})$ denote the matrices of the 1st and the 2nd fundamental form, respectively. The extremal values κ_1, κ_2 of $\kappa(\mathbf{T}, \mathbf{N})$ are roots of the equation

$$\det(h(\mathbf{N}) - \mu G) = 0$$

$$\det G \cdot \mu^2 - (g_{2,2} h_{1,1}(\mathbf{N}) + g_{1,1} h_{2,2}(\mathbf{N}) - 2 g_{1,2} h_{1,2}(\mathbf{N})) \mu + \det h(\mathbf{N}) = 0.$$
The mean curvature vector

The Vieta formula gives

\[H(N) = \frac{\kappa_1 + \kappa_2}{2} = \frac{g_{2,2}X_{u_1u_1} + g_{1,1}X_{u_2u_2} - 2g_{1,2}X_{u_1u_2}}{2 \det G} \cdot N. \]

There is a unique normal vector \(H \in N_pS \) such that

\[H(N) = H \cdot N \quad \text{for all} \quad N \in N_pS. \]

This vector \(H \) is the mean curvature vector of the surface \(S \) at \(p \).
The mean curvature vector

The Vieta formula gives

\[H(N) = \frac{\kappa_1 + \kappa_2}{2} = \frac{g_{2,2}X_{u_1u_1} + g_{1,1}X_{u_2u_2} - 2g_{1,2}X_{u_1u_2}}{2 \det G} \cdot N. \]

There is a unique normal vector \(H \in N_pS \) such that

\[H(N) = H \cdot N \quad \text{for all} \quad N \in N_pS. \]

This vector \(H \) is the **mean curvature vector** of the surface \(S \) at \(p \).

Assume now that we work in isothermal coordinates:

\[G = (g_{i,j}) = \zeta I, \quad \det G = \zeta^2; \quad \zeta = \|X_{u_1}\|^2 = \|X_{u_2}\|^2, \quad X_{u_1} \cdot X_{u_2} = 0 \]

Then:

\[H(N) = \frac{X_{u_1u_1} + X_{u_2u_2}}{2\zeta} \cdot N = \frac{\triangle X}{2\zeta} \cdot N. \]
The main formula in isothermal coordinates

Claim: \(\Delta X = X_{u_1u_1} + X_{u_2u_2} \) is orthogonal to \(S = X(D) \).
The main formula in isothermal coordinates

Claim: $\triangle X = X_{u_1 u_1} + X_{u_2 u_2}$ is orthogonal to $S = X(D)$.

Proof: Conformality means that

$$X_{u_1} \cdot X_{u_1} = X_{u_2} \cdot X_{u_2}, \quad X_{u_1} \cdot X_{u_2} = 0.$$

Differentiating the first identity on u_1 and the second one on u_2 yields

$$X_{u_1 u_1} \cdot X_{u_1} = X_{u_1 u_2} \cdot X_{u_2} = -X_{u_2 u_2} \cdot X_{u_1},$$

whence $\triangle X \cdot X_{u_1} = 0$. Similarly we get $\triangle X \cdot X_{u_2} = 0$ by differentiating the first identity on u_2 and the second one on u_1.
The main formula in isothermal coordinates

Claim: \(\Delta X = X_{u_1 u_1} + X_{u_2 u_2} \) is orthogonal to \(S = X(D) \).

Proof: Conformality means that

\[
X_{u_1} \cdot X_{u_1} = X_{u_2} \cdot X_{u_2}, \quad X_{u_1} \cdot X_{u_2} = 0.
\]

Differentiating the first identity on \(u_1 \) and the second one on \(u_2 \) yields

\[
X_{u_1 u_1} \cdot X_{u_1} = X_{u_1 u_2} \cdot X_{u_2} = -X_{u_2 u_2} \cdot X_{u_1},
\]

whence \(\Delta X \cdot X_{u_1} = 0 \). Similarly we get \(\Delta X \cdot X_{u_2} = 0 \) by differentiating the first identity on \(u_2 \) and the second one on \(u_1 \).

Since \(H(N) = H \cdot N = \frac{\Delta X}{2\zeta} \cdot N \) and \(\Delta X \) is normal to \(S \), we get

\[
\Delta X = 2\zeta H, \quad \zeta = \|X_{u_1}\|^2 = \|X_{u_2}\|^2 \quad \text{(Main formula)}.
\]
Lagrange’s formula for the first variation of the area

The area of an immersed surface $\mathbf{X}: D \to \mathbb{R}^n$ equals

$$A(\mathbf{X}) = \int_D \sqrt{\det G} \cdot du_1 du_2.$$

Let $\mathbf{N}: D \to \mathbb{R}^n$ be a normal vector field along \mathbf{X} which vanishes on bD. Consider the 1-parameter family of maps $\mathbf{X}^t: D \to \mathbb{R}^n$:

$$\mathbf{X}^t(u) = \mathbf{X}(u) + t \mathbf{N}(u), \quad u \in D, \ t \in \mathbb{R}.$$

A calculation gives the formula for the first variation of the area:

$$\delta A(\mathbf{X}) \mathbf{N} = \frac{d}{dt} \bigg|_{t=0} A(\mathbf{X}^t) = -2 \int_D \mathbf{H} \cdot \mathbf{N} \sqrt{\det G} \cdot du_1 du_2.$$

It follows that $\delta A(\mathbf{X}) \mathbf{N} = 0 \iff \mathbf{H} = 0.$
Lagrange’s formula for the first variation of the area

The area of an immersed surface $\mathbf{X}: D \rightarrow \mathbb{R}^n$ equals

$$A(\mathbf{X}) = \int_D \sqrt{\det G} \cdot \text{du}_1 \text{du}_2.$$

Let $\mathbf{N}: D \rightarrow \mathbb{R}^n$ be a *normal vector field* along \mathbf{X} which vanishes on bD. Consider the 1-parameter family of maps $\mathbf{X}^t: D \rightarrow \mathbb{R}^n$:

$$\mathbf{X}^t(u) = \mathbf{X}(u) + t \mathbf{N}(u), \quad u \in D, \; t \in \mathbb{R}.$$

A calculation gives the formula for the first variation of the area:

$$\delta A(\mathbf{X}) \mathbf{N} = \frac{d}{dt} \bigg|_{t=0} A(\mathbf{X}^t) = -2 \int_D \mathbf{H} \cdot \mathbf{N} \sqrt{\det G} \cdot \text{du}_1 \text{du}_2.$$

It follows that $\delta A(\mathbf{X}) = 0 \iff \mathbf{H} = 0$.
Appendix B: Topological structure of non-orientable surfaces

Every compact non-orientable surface N without boundary is the connected sum $N = \mathbb{P}^2 \# \cdots \# \mathbb{P}^2$ of $g \geq 1$ copies of the real projective plane \mathbb{P}^2; the number g is the genus of N. (This is the maximal number of pairwise disjoint closed curves in N which reverse the orientation.)
Every compact non-orientable surface N without boundary is the connected sum $N = \mathbb{P}^2 \# \cdots \# \mathbb{P}^2$ of $g \geq 1$ copies of the real projective plane \mathbb{P}^2; the number g is the genus of N. (This is the maximal number of pairwise disjoint closed curves in N which reverse the orientation.)

Furthermore, $K = \mathbb{P}^2 \# \mathbb{P}^2$ is the Klein bottle, and for any non-orientable surface N we have $N \# K = N \# T$ where T is the torus.
Appendix B: Topological structure of non-orientable surfaces

Every compact non-orientable surface N without boundary is the connected sum $N = \mathbb{P}^2 \# \cdots \# \mathbb{P}^2$ of $g \geq 1$ copies of the real projective plane \mathbb{P}^2; the number g is the genus of N. (This is the maximal number of pairwise disjoint closed curves in N which reverse the orientation.)

Furthermore, $K = \mathbb{P}^2 \# \mathbb{P}^2$ is the Klein bottle, and for any non-orientable surface N we have $N \# K = N \# T$ where T is the torus.

This gives the following dichotomy according to whether the genus g is even or odd:

(I) $g = 1 + 2k \geq 1$ is odd. In this case, $N = \mathbb{P}^2 \# \underbrace{T \# \cdots \# T}_k$.

(II) $g = 2 + 2k \geq 2$ is even. In this case, $N = \mathbb{P}^2 \# \mathbb{P}^2 \# \underbrace{T \# \cdots \# T}_k$.
Let $\iota: M \to N$ be a 2-sheeted covering by a compact orientable surface (M, \mathcal{I}). Then M has genus $g - 1$. We construct an explicit geometric model for (M, \mathcal{I}) in \mathbb{R}^3.

Let S^2 be the unit sphere in \mathbb{R}^3 centered at the origin, and let $\tau: \mathbb{R}^3 \to \mathbb{R}^3$ be the involution $\tau(x) = -x$.

Case (I): $N = P_2 \# k \mathbb{T} \# \cdots \# T \# \cdots \# T$. We take M to be an embedded surface $(T_\pm 1 \# \cdots \# T \pm k)$ of genus $g = 2k$ in \mathbb{R}^3 which is invariant by the symmetry with respect to the origin (i.e., $\tau(M) = M$), where $T_\pm j$, $T_\pm j$ are embedded tori in \mathbb{R}^3 with $\tau(T_\pm j) = T_\pm j$ for all j. Set $I = \tau|_M: M \to M$. (See Fig. 1.)

We have $M = M^- \cup C \cup M^+$, where $C \subset S^2$ is a closed \mathcal{I}-invariant cylinder and M^- and M^+ are the closure of the two components of $M \setminus C$, both homeomorphic to the connected sum of k tori minus an open disk. Obviously $I(M^-) = M^+$ and $M^- \cap M^+ = \emptyset$.

Geometric model of 2-sheeted oriented covering
Let $\iota: M \rightarrow N$ be a 2-sheeted covering by a compact orientable surface (M, \mathcal{I}). Then M has genus $g - 1$. We construct an explicit geometric model for (M, \mathcal{I}) in \mathbb{R}^3.

Let S^2 be the unit sphere in \mathbb{R}^3 centered at the origin, and let $\tau: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the involution $\tau(x) = -x$.

Case (I): $N = \mathbb{P}^2 \# T \# \cdots \# T$. We take M to be an embedded surface

$$\left(T_1^- \# \cdots \# T_k^- \right) \# S^2 \# \left(T_1^+ \# \cdots \# T_k^+ \right)$$

of genus $g - 1 = 2k$ in \mathbb{R}^3 which is invariant by the symmetry with respect to the origin (i.e., $\tau(M) = M$), where T_j^-, T_j^+ are embedded tori in \mathbb{R}^3 with $\tau(T_j^-) = T_j^+$ for all j. Set $\mathcal{I} = \tau|_M: M \rightarrow M$. (See Fig. 1.)
Let $\iota: M \to N$ be a 2-sheeted covering by a compact orientable surface (M, I). Then M has genus $g - 1$. We construct an explicit geometric model for (M, I) in \mathbb{R}^3.

Let S^2 be the unit sphere in \mathbb{R}^3 centered at the origin, and let $\tau: \mathbb{R}^3 \to \mathbb{R}^3$ be the involution $\tau(x) = -x$.

Case (I): $N = \mathbb{P}^2 \# \mathbb{T} \# \cdots \# \mathbb{T}$. We take M to be an embedded surface

$$(\mathbb{T}_1^- \# \cdots \# \mathbb{T}_k^-) \# S^2 \# (\mathbb{T}_1^+ \# \cdots \# \mathbb{T}_k^+)$$

of genus $g - 1 = 2k$ in \mathbb{R}^3 which is invariant by the symmetry with respect to the origin (i.e., $\tau(M) = M$), where \mathbb{T}_j^-, \mathbb{T}_j^+ are embedded tori in \mathbb{R}^3 with $\tau(\mathbb{T}_j^-) = \mathbb{T}_j^+$ for all j. Set $I = \tau|_M: M \to M$. (See Fig. 1.)

We have $M = M^- \cup C \cup M^+$, where $C \subset S^2$ is a closed I-invariant cylinder and M^- and M^+ are the closure of the two components of $M \setminus C$, both homeomorphic to the connected sum of k tori minus an open disk. Obviously $I(M^-) = M^+$ and $M^- \cap M^+ = \emptyset$.
Geometric model, Case II

Case (II): $N = \mathbb{P}^2 \# \mathbb{P}^2 \# \overbrace{T \# \cdots \# T}^{k} = K \# \overbrace{T \# \cdots \# T}^{k}$.

Let $T_0 \subset \mathbb{R}^3$ be the standard revolution torus centered at the origin, i.e., invariant under the antipodal map τ. In this case we let M be an embedded τ-invariant surface in \mathbb{R}^3, where the tori $T_{\pm j}$ are as above, and set $I = \tau |_M$. (See Figure 2.)

Write $M = M_- \cup K \cup M_+$, where $K \subset T_0 \subset \mathbb{R}^3$ is an I-invariant torus minus two disjoint open disks, and M_- and M_+ are the closure of the two components of $M \setminus K$, both homeomorphic to the connected sum of k tori minus an open disk. Obviously $I(M_-) = M_+$ and $M_- \cap M_+ = \emptyset$.

Geometric model, Case II

Case (II): \(N = \mathbb{P}^2 \# \mathbb{P}^2 \# \overbrace{T \# \cdots \# T}^{k} = K \# \overbrace{T \# \cdots \# T}^{k}. \)

Let \(T_0 \subset \mathbb{R}^3 \) be the standard revolution torus centered at the origin, i.e., invariant under the antipodal map \(\tau \). In this case we let \(M \) be an embedded \(\tau \)-invariant surface

\[
(T_1^- \# \cdots \# T_k^-) \# T_0 \# (T_1^+ \# \cdots \# T_k^+)
\]

in \(\mathbb{R}^3 \), where the tori \(T_j^\pm \) are as above, and set \(\mathcal{I} = \tau|_M \). (See Figure 2.)
Geometric model, Case II

Case (II): \(N = P^2 \# P^2 \# \underbrace{T \# \cdots \# T}_k = K \# \underbrace{T \# \cdots \# T}_k \).

Let \(T_0 \subset \mathbb{R}^3 \) be the standard revolution torus centered at the origin, i.e., invariant under the antipodal map \(\tau \). In this case we let \(M \) be an embedded \(\tau \)-invariant surface

\[
(T_{-1}^{-} \# \cdots \# T_k^{-}) \# T_0 \# (T_{1}^{+} \# \cdots \# T_k^{+})
\]

in \(\mathbb{R}^3 \), where the tori \(T_{\pm}^j \) are as above, and set \(\mathcal{I} = \tau|_M \). (See Figure 2.)

Write \(M = M^- \cup K \cup M^+ \), where \(K \subset T_0 \subset \mathbb{R}^3 \) is a \(\mathcal{I} \)-invariant torus minus two disjoint open disks, and \(M^- \) and \(M^+ \) are the closure of the two components of \(M \setminus K \), both homeomorphic to the connected sum of \(k \) tori minus an open disk. Obviously \(\mathcal{I}(M^-) = M^+ \) and \(M^- \cap M^+ = \emptyset \).