Runge tubes

Franc Forstnerič

Univerza v Ljubljani

Central European Complex Analysis Meeting II
Vienna, 12-14 April 2018
Runge cylinders in \mathbb{C}^2

It was an open question for a long time whether it is possible to embed $\mathbb{C}^* \times \mathbb{C}$ as a Runge domain $\Omega \subset \mathbb{C}^2$, i.e., such that holomorphic polynomials are dense in $\mathcal{O}(\Omega)$. (Here, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.)

Such hypothetical domains have been called Runge cylinders in \mathbb{C}^2. The question arose in connection with the classification of Fatou components for Hénon maps by E. Bedford and J. Smillie (1991).

Note that the standard embedding $\mathbb{C}^* \times \mathbb{C} \hookrightarrow \mathbb{C}^2$ is not Runge since, using the coordinates (z, w) on \mathbb{C}^2, the holomorphic function $1/z$ on $\mathbb{C}^* \times \mathbb{C}$ cannot be approximated by holomorphic polynomials in (z, w).

A complex manifold X is said to be a Stein manifold if X admits a proper holomorphic embedding as a closed complex submanifold of some complex Euclidean space \mathbb{C}^N; in this case we can take $N = \left\lceil \frac{3n}{2} \right\rceil + 1$ when $n > 1$, and $N = 3$ when $n = 1$. A Riemann surface X is a Stein manifold if (and only if) it is open (non compact).
Existence and plenitude of Runge tubes

In a recent joint work with Erlend Fornæss Wold (University of Oslo), we gave a simple proof of the following considerably more general result. https://arxiv.org/abs/1801.07645

Theorem (1)

Let X be a Stein manifold and $\theta : X \hookrightarrow \mathbb{C}^n$ be a proper holomorphic embedding. Let $E \to X$ denote the normal bundle associated to θ. Then, θ is approximable uniformly on compacts in X by holomorphic embeddings $\tilde{\theta} : E \hookrightarrow \mathbb{C}^n$ whose images $\tilde{\theta}(E)$ are Runge domains in \mathbb{C}^n.

To get a Runge embedding of $\mathbb{C}^* \times \mathbb{C}$ into \mathbb{C}^2 from Theorem 1, one embeds $X = \mathbb{C}^*$ onto the algebraic curve $A = \{zw = 1\} \subset \mathbb{C}^2$ and notes that any vector bundle over \mathbb{C}^* (and in fact over any open Riemann surface) is trivial by Oka’s theorem (1939).
It is known that every open Riemann surface, X, embeds properly holomorphically into \mathbb{C}^3, and a plenitude of them embed into \mathbb{C}^2.

Corollary (Runge tubes over open Riemann surfaces)

If X is an open Riemann surface which admits a proper holomorphic embedding into \mathbb{C}^2, then $X \times \mathbb{C}$ admits a Runge embedding into \mathbb{C}^2.

For every open Riemann surface X and $k \geq 2$, $X \times \mathbb{C}^k$ embeds as a Runge domain into \mathbb{C}^{k+1}.

It is a long standing open problem whether every open Riemann surface embeds as a closed complex curve in \mathbb{C}^2. Here are two most general known results; in each case $X \times \mathbb{C}$ embeds as a Runge domain into \mathbb{C}^2.

Wold and F. (2009) A bordered Riemann surface which embeds nonproperly holomorphically into \mathbb{C}^2 also embeds properly into \mathbb{C}^2.

Wold and F. (2013) Every circled domain in \mathbb{C} with at most finitely many punctures (and at most countably many disc holes) embeds properly holomorphically into \mathbb{C}^2.
A parabolic basin

The existence of a Runge embedding $\mathbb{C}^* \times \mathbb{C} \hookrightarrow \mathbb{C}^2$ has also been proved recently by Bracci et al.

Theorem (F. Bracci, J. Raissy, and B. Stensønes, 2017)

For every $n \geq 2$ there exists a (non-polynomial) holomorphic automorphism of \mathbb{C}^n with a parabolic fixed point at 0 whose basin of attraction is biholomorphic to $\mathbb{C} \times (\mathbb{C}^)^{n-1}$.*

Note that any attracting basin of an automorphism ϕ of \mathbb{C}^n (or in a Stein manifold) is always a Runge domain in \mathbb{C}^n. Indeed, if the iterates ϕ^k ($k \in \mathbb{N}$) converge to a point uniformly on a compact set K, then same holds on its polynomial hull \hat{K}.

The proof of this theorem is much more involved than our construction. It is not clear whether there exist more general parabolic basins.
Manifolds with density property

Varolin 2000 A complex manifold Y enjoys the **density property (DP)** if every holomorphic vector field on Y can be approximated by Lie combinations of \mathbb{C}-complete holomorphic vector fields.

A Lie algebra \mathfrak{g} of holomorphic vector fields on Y enjoys DP if it is densely generated by the complete vector fields that it contains. If Y carries a holomorphic volume form ω, then the density property for the Lie algebra $\mathfrak{g}(\omega)$ of all holomorphic vector fields with vanishing ω-divergence is called the **volume density property (VDP)** of (Y, ω).

Andersén 1990; Andersén & Lempert 1992 \mathbb{C}^n enjoys DP for $n > 1$, and VDP for the volume form $\omega = dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n$ for $n \geq 1$.

In fact, **every polynomial holomorphic vector field on \mathbb{C}^n is a finite sum of polynomial shear vector fields** of the form

$$V(z) = V(z', z_n) = f(z') \frac{\partial}{\partial z_n}, \quad W(z) = f(z')z_n \frac{\partial}{\partial z_n},$$

where $f \in \mathbb{C}[z_1, \ldots, z_{n-1}]$, and their $GL_n(\mathbb{C})$ conjugates.
A Stein manifold Y with DP or VDP is highly symmetric and has a very big holomorphic automorphism group $\text{Aut}(Y)$. In particular:

Theorem (Andersén-Lempert, Forstnerič-Rosay, Varolin)

Let Y be a Stein manifold with DP. Assume that

$$F_t: \Omega_0 \rightarrow \Omega_t \subset Y, \quad t \in [0,1],$$

is a smooth isotopy of biholomorphic maps between Stein Runge domains in Y, with $F_0 = \text{Id}|_{\Omega_0}$. Then, $F_1: \Omega_0 \rightarrow \Omega_1$ is a limit of holomorphic automorphisms of Y, uniformly on compacts in Ω_0.

The analogous result holds for isotopies of biholomorphic maps preserving a holomorphic volume form on a Stein manifold with VDP.

The theorem also holds if $\Omega_t = F_t(\Omega_0)$ is a neighborhood of a compact $\mathcal{O}(Y)$-convex set $K_t = F_t(K_0)$, with uniform approximation on K_0.
The following is our main result with E.F. Wold.

Theorem (2)

Let X and Y be Stein manifolds with $\dim X < \dim Y$, and assume that Y has the density property.

Suppose that $\theta : X \hookrightarrow Y$ is a holomorphic embedding with $\mathcal{O}(Y)$-convex image (this holds in particular if θ is proper), and let $E \to X$ denote the normal bundle associated to θ.

Then, θ is approximable uniformly on compacts in X by holomorphic embeddings $\tilde{\theta} : E \leftrightarrow Y$ whose images $\tilde{\theta}(E)$ are Runge domains in Y.

A locally closed subset Z of a complex manifold Y is said to be $\mathcal{O}(Y)$-convex if for every compact set $K \subset Z$, its $\mathcal{O}(Y)$-convex hull

$$\hat{K}_{\mathcal{O}(Y)} = \{ y \in Y : |f(y)| \leq \sup_{K} |f| \quad \forall f \in \mathcal{O}(Y) \}$$

is compact and contained in Z.
Every Stein manifold Y with (V)DP enjoys a number of holomorphic flexibility properties, similar to those of Euclidean spaces:

- **It is an Oka manifold**: every continuous map $X \to Y$ from a Stein manifold X which is holomorphic on a compact $\mathcal{O}(X)$-convex set $K \subset X$ can be approximated on K by holomorphic maps $X \to Y$;
- **Y is infinitely transitive**: every finite set of points in Y can be simultaneously moved to any other set with the same number of points by an automorphism of Y;
- **Andrist, F., Ritter, Wold 2016; F. 2017** If X is a Stein manifold and $\dim Y > 2 \dim X$, then any continuous map $X \to Y$ is homotopic to a proper holomorphic embedding $X \hookrightarrow Y$ (and to a proper holomorphic immersion if $\dim Y = 2 \dim X$).

Corollary

*Every Stein manifold Y with DP contains a Runge domain biholomorphic to the total space E of a holomorphic vector bundle over an arbitrary Stein manifold X with $2 \dim X < \dim Y$.***
Examples of Stein manifolds with (V)DP

- **Andersén (1990)** \mathbb{C}^n for $n \geq 1$ satisfies VDP for $dz_1 \wedge \cdots \wedge dz_n$.
- **Andersén and Lempert (1992)** \mathbb{C}^n for any $n > 1$ satisfies DP.
- **Varolin (2000)** $(\mathbb{C}^\ast)^n$ with the volume form $\frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_n}{z_n}$ satisfies VDP. It is not known whether DP holds when $n > 1$.
- **Kaliman, Donzelli & Dvorsky (2010)** If G is a linear algebraic group and $H \subset G$ is a closed proper reductive subgroup, then $Y = G/H$ is a Stein manifold with DP, except when $Y = \mathbb{C}$, $(\mathbb{C}^\ast)^n$, or a \mathbb{Q}-homology plane with fundamental group \mathbb{Z}_2.
- **Kaliman and Kutzschebauch (2008)** In particular, a linear algebraic group with connected components different from \mathbb{C} or $(\mathbb{C}^\ast)^n$ has DP.
- **K& K (2008)** If $p : \mathbb{C}^n \to \mathbb{C}$ is a holomorphic function with smooth reduced zero fibre, then $Y = \{xy = p(z)\}$ has DP. The same is true if the source \mathbb{C}^n of p is an arbitrary Stein manifold with DP.
- **K& K (2008)** A Cartesian product $Y_1 \times Y_2$ of two Stein manifolds Y_1, Y_2 with DP also has DP. The analogous result holds for VDP.
Gizatullin surfaces and the Koras-Russell cubic

- **Andrist 2017** A smooth affine algebraic surface Y is a *Gizatullin surface* if $\text{Aut}_{\text{alg}}(Y)$ acts transitively on Y up to finitely many points. Every such surface admits a fibration $\pi: Y \to \mathbb{C}$ whose generic fiber equals \mathbb{C} and there is only one exceptional fiber. **If this exceptional fiber is reduced, then Y has the density property.**

- **Leuenberger 2016** DP holds for a family of hypersurfaces

$$Y = \{(x, y, z) \in \mathbb{C}^{n+3} : x^2 y = a(z) + xb(z)\},$$

where $x, y \in \mathbb{C}$ and $a, b \in \mathbb{C}[z]$ are polynomials in $z \in \mathbb{C}^{n+1}$. This family includes the *Koras-Russell cubic threefold*

$$C = \{(x, y, z_0, z_1) \in \mathbb{C}^4 : x^2 y + x + z_0^2 + z_1^3 = 0\}.$$

This threefold is diffeomorphic to \mathbb{R}^6, but is not algebraically isomorphic to \mathbb{C}^3; in particular, $\text{Aut}_{\text{alg}}(C)$ does not act transitively on C (*Makar-Limanov, Dubouloz*).

It remains an open question whether C is biholomorphic to \mathbb{C}^3.
Assume that $\pi : E \to X$ is a **holomorphic vector bundle** over a Stein manifold X. The total space E is then also a Stein manifold. We write elements of E as $e = (x, v)$, identifying X with the zero section of E:

$$X \cong \{ (x, 0) : x \in X \} \subset E.$$

Consider the holomorphic automorphisms $\psi_t \in \text{Aut}(E)$ given by

$$\psi_t(x, v) = (x, tv), \quad t \in \mathbb{C}^*.$$

Note that

$$\psi_t|_X = \text{Id}_X \quad \text{for all } t.$$

A subset $Z \subset E$ is called **radial** if

$$\psi_t(Z) \subset Z \text{ holds for every } t \in [0, 1].$$
Proof of Theorem 2: The inductive step

Lemma

Assume that:

- X is a Stein manifold,
- $\pi : E \to X$ is a holomorphic vector bundle,
- $K \subset L$ are compact radial $\mathcal{O}(E)$-convex subsets of E,
- $\Omega \subset E$ is an open set containing $X \cup K$,
- Y is a Stein manifold with DP such that $\dim Y = \dim E$, and
- $\theta : \Omega \hookrightarrow Y$ is a holomorphic embedding such that $\theta|_X : X \hookrightarrow Y$ is a Runge embedding and $\theta(K)$ is $\mathcal{O}(Y)$-convex.

Then there is a domain $\tilde{\Omega}$, with $X \cup L \subset \tilde{\Omega} \subset E$, such that θ can be approximated uniformly on K by holomorphic embeddings

$$\tilde{\theta} : \tilde{\Omega} \hookrightarrow Y$$

so that $\tilde{\theta}|_X : X \hookrightarrow Y$ is a Runge embedding and $\tilde{\theta}(L)$ is $\mathcal{O}(Y)$-convex.
Proof of the lemma

- Choose a compact $\mathcal{O}(X)$-convex subset $X_0 \subset X$ with $\pi(L) \subset X_0$. Since the embedding $\theta|_X : X \hookrightarrow Y$ is Runge, the image $Y_0 := \theta(X_0) \subset \theta(X)$ is $\mathcal{O}(Y)$-convex.

- Pick a compact $\mathcal{O}(Y)$-convex neighborhood $N \subset \theta(\Omega)$ of Y_0. Thus, $N = \theta(N_0)$ for a compact set $N_0 \subset \Omega$ with $X_0 \subset \hat{N}_0$.

- Since $\pi(L) \subset X_0$, there exists $\epsilon > 0$ such that $\psi_\epsilon(L) \subset N_0$.

- Since L is $\mathcal{O}(E)$-convex and $\psi_\epsilon \in \text{Aut}(E)$, the set $\psi_\epsilon(L) \subset N_0$ is also $\mathcal{O}(E)$-convex, and hence $\mathcal{O}(N_0)$-convex.

- Since $\theta : \Omega \rightarrow \theta(\Omega)$ is a biholomorphism and $\psi_\epsilon(L)$ is $\mathcal{O}(N_0)$-convex, the image $\theta(\psi_\epsilon(L))$ is $\mathcal{O}(N)$-convex, and hence also $\mathcal{O}(Y)$-convex (since N is $\mathcal{O}(Y)$-convex).
Proof of the lemma, 2

After shrinking Ω around $X \cup K$, we may assume that it is radial, $\psi_t(\Omega) \subset \Omega$ for all $t \in [0, 1]$. Consider the isotopy of injective holomorphic maps

$$\sigma_t : \theta(\Omega) \to \theta(\Omega), \quad t \in [\epsilon, 1],$$

defined by the conjugation condition

$$\theta \circ \psi_t = \sigma_t \circ \theta.$$

Note that $\sigma_1 = \text{Id}$ on $\theta(\Omega)$, and

\begin{equation} \label{eq:compact-set}
(*) \quad \text{the compact set } \sigma_t(\theta(K)) \subset Y \text{ is } \mathcal{O}(Y)\text{-convex for every } t \in [\epsilon, 1].
\end{equation}

Indeed, since $\psi_t(K) \subset K$ is clearly $\mathcal{O}(K)$-convex and $\theta : \Omega \to \theta(\Omega)$ is a biholomorphism, we have that

$$\sigma_t(\theta(K)) = \theta(\psi_t(K)) \text{ is } \mathcal{O}(\theta(K))\text{-convex.}$$

Since $\theta(K)$ is $\mathcal{O}(Y)$-convex, the claim follows.
Proof of the lemma, 3

Since $\sigma_t(\theta(K))$ is $O(Y)$-convex for every $t \in [\epsilon, 1]$ and Y has DP,

σ_ϵ can be approximated uniformly on $\theta(K)$ by $\phi \in Aut(Y)$.

Since $\psi_\epsilon(L \cup X) = \psi_\epsilon(L) \cup X \subset \Omega$ by the choice of $\epsilon > 0$, there is an open neighborhood $\tilde{\Omega} \subset E$ of $L \cup X$ such that $\psi_\epsilon(\tilde{\Omega}) \subset \Omega$.

We claim that the holomorphic embedding

$$\tilde{\theta} = \phi^{-1} \circ \theta \circ \psi_\epsilon : \tilde{\Omega} \hookrightarrow Y$$

satisfies the lemma. Indeed:

- The sets $\tilde{\theta}(L)$ and $\tilde{\theta}(K)$ are $O(Y)$-convex (since the sets $\theta(\psi_\epsilon(L))$ and $\theta(\psi_\epsilon(K))$ are $O(Y)$-convex and $\phi \in Aut(Y)$).
- $\tilde{\theta}|_X = \phi^{-1} \circ \theta|_X : X \hookrightarrow Y$ is a Runge embedding since $\theta|_X$ is.
- On the set K we have that $\theta \circ \psi_\epsilon = \sigma_\epsilon \circ \theta$ and hence

$$\tilde{\theta} = \phi^{-1} \circ \theta \circ \psi_\epsilon = \phi^{-1} \circ \sigma_\epsilon \circ \theta.$$

Since $\phi^{-1} \circ \sigma_\epsilon$ is close to the identity on $\theta(K)$ by the choice of ϕ, it follows that $\tilde{\theta}$ is close to θ on K.
Proof of Theorem 1

Pick an exhaustion $K_1 \subset K_2 \subset \cdots \subset \bigcup_{j=1}^{\infty} K_j = E$ by compact radial $\mathcal{O}(E)$-convex sets.

Let $\theta : X \hookrightarrow Y$ be a holomorphic Runge embedding. By a theorem of Docquier and Grauert (1960) there is a neighbourhood $\Omega_0 \subset E$ of the zero section $X \subset E$ such that θ extends to a holomorphic embedding

$$\theta_0 : \Omega_0 \hookrightarrow Y.$$

Set $K_0 = \emptyset$. Applying the main lemma inductively, we find

open neighbourhoods $\Omega_j \subset E$ of $K_j \cup X$, and

holomorphic embeddings $\theta_j : \Omega_j \hookrightarrow Y$,

satisfying the following conditions for every $j \in \mathbb{N}$:

(a) the compact sets $\theta_j(K_j)$ and $\theta_j(K_{j-1})$ are $\mathcal{O}(Y)$-convex,

(b) the embedding $\theta_j|_X : X \hookrightarrow Y$ is Runge, and

(c) θ_j approximates θ_{j-1} as closely as desired on K_{j-1}.
Proof of Theorem 1

If the approximations are close enough, the sequence \(\theta_j \) converges uniformly on compacts in \(E \) to a holomorphic embedding \(\tilde{\theta} : E \hookrightarrow Y \).

Since \(\mathcal{O}(Y) \)-convexity of a compact set in a Stein manifold \(Y \) is a stable property for compact strongly pseudoconvex domains and every compact \(\mathcal{O}(Y) \)-convex set can be approximated from the outside by such domains, it follows that the image of each \(K_j \) remains \(\mathcal{O}(Y) \)-convex in the limit provided that all approximations were close enough.

Hence, \(\tilde{\theta}(E) \) is a Runge domain in \(Y \). This proves the theorem.
Runge tubes around algebraic submanifolds of \(\mathbb{C}^n \)

The Runge embeddings \(E \hookrightarrow Y \) of the normal bundle in Theorems 1 and 2 need not agree with the embedding \(\theta : X \hookrightarrow Y \) on the zero section \(X \) of \(E \). However, we can ensure this additional condition for algebraic embeddings of codimension at least 2 into \(\mathbb{C}^n \).

Theorem (2)

Let \(\theta : X \hookrightarrow \mathbb{C}^n \) be proper holomorphic embedding onto an algebraic submanifold \(A = \theta(X) \subset \mathbb{C}^n \).

If \(n \geq \dim A + 2 \), then \(\theta \) extends to a holomorphic Runge embedding \(\tilde{\theta} : E \hookrightarrow Y \) of the normal bundle \(E \) of the embedding \(\theta \).

Since every vector bundle over an open Riemann surface is trivial, we get

Corollary

Let \(X \) be an affine algebraic curve. Every proper algebraic embedding \(\theta : X \hookrightarrow \mathbb{C}^{n+1} \) for \(n \geq 2 \) extends to a holomorphic embedding \(\tilde{\theta} : X \times \mathbb{C}^n \hookrightarrow \mathbb{C}^{n+1} \) onto a Runge domain in \(\mathbb{C}^{n+1} \).
Runge tubes around algebraic submanifolds of \mathbb{C}^n

The proof requires the following

Addendum to the main lemma:
If $Y = \mathbb{C}^n$ with $n \geq \dim X + 2$, $\theta : \Omega \hookrightarrow Y$ is a holomorphic embedding (where $\Omega \subset E$ is an open neighborhood of $K \cup X$), and $A = \theta(X) \subset \mathbb{C}^n$ is a **closed algebraic submanifold** of \mathbb{C}^n, then the approximating holomorphic embedding $\tilde{\theta} : \tilde{\Omega} \hookrightarrow \mathbb{C}^n$ can be chosen to agree with θ on X.

The proof uses the following result.

Theorem (Kaliman and Kutzschebauch, 2008)

*If $A \subset \mathbb{C}^n$ is an algebraic submanifold with $n \geq \dim A + 2$, then every polynomial vector field on \mathbb{C}^n that vanishes on A is a Lie combination of complete polynomial shear vector fields vanishing on A.***

By using this result and Serre’s Theorem A and B, we can approximate the biholomorphism σ_ϵ (in the proof of Theorem 2) by an automorphism $\phi \in \text{Aut}(\mathbb{C}^n)$ such that $\phi(z) = z$ for all $z \in A$.
THANK YOU

FOR YOUR ATTENTION