STABILITY OF POLYNOMIAL CONVEXITY OF TOTALLY REAL SETS

FRANC FORSTNERIČ

ABSTRACT. We show that certain compact polynomially convex subsets of \mathbb{C}^n remain polynomially convex under sufficiently small C^2 perturbations.

1. Statement of the results. Let M be a Stein manifold. Denote by $\mathcal{O}(M)$ the algebra of all holomorphic functions on M with the standard topology of uniform convergence on compact subsets. A compact subset K of M is said to be $\mathcal{O}(M)$-convex if for every point $x \in M \setminus K$ there is a holomorphic function $f \in \mathcal{O}(M)$ such that

$$|f(x)| > \sup_{y \in K} |f(y)|.$$

Since the holomorphic polynomials are dense in the algebra $\mathcal{O}(\mathbb{C}^n)$ of holomorphic functions on \mathbb{C}^n, an $\mathcal{O}(\mathbb{C}^n)$-convex subset of \mathbb{C}^n is just a polynomially convex subset.

Given a compact $\mathcal{O}(M)$-convex subset K of M, an open neighborhood U of K and a C^k diffeomorphism Ψ of U onto an open subset $\Psi(U)$ in M, we ask whether the set $\Psi(K)$ is also $\mathcal{O}(M)$-convex provided that Ψ is sufficiently close to the identity on U in the C^k sense. In other words, is $\mathcal{O}(M)$-convexity a stable property under smooth perturbations? In general this is not so as the following example shows.

Example 1. Let $M = \mathbb{C}^2$ and $K = \{(z,0) \in \mathbb{C}^2 : |z| \leq 1\}$. Clearly K is convex and hence polynomially convex. The diffeomorphisms $\Psi_\varepsilon : \mathbb{C}^2 \to \mathbb{C}^2$ given by

$$\Psi_\varepsilon(z,w) = (z, w + \varepsilon |z|^2), \quad \varepsilon \geq 0,$$

are close to the identity in the C^∞ sense for small ε, but the set

$$\Psi_\varepsilon(K) = \left\{(z, \varepsilon |z|^2) : |z| \leq 1\right\}$$

is not polynomially convex for any $\varepsilon > 0$ since it contains the boundary of the analytic disk $\Delta_{\delta, \theta} = \{(z, \varepsilon \delta^2 e^{i\theta}) : |z| \leq \delta\}$ for each $\delta \in [0,1]$ and $\theta \in \mathbb{R}$. These disks fill an open subset of \mathbb{C}^2 that is contained in the polynomial hull of $\Psi_\varepsilon(K)$ according to the maximum principle.
Recall that a C^1 submanifold Σ of a complex manifold M is called totally real if for each point $x \in \Sigma$ the tangent space $T_x \Sigma$ contains no nontrivial complex subspace. If K is a compact subset of a totally real submanifold Σ, then by [2, p. 300] there is an open neighborhood U of K in M and a C^2 strictly plurisubharmonic function $\rho: U \to \mathbb{R}_+$ such that

$$K = \{ x \in U \mid \rho(x) = 0 \}, \quad \rho \geq 0 \text{ strictly plurisubharmonic on } U.$$

Conversely, every compact subset K of M of the form (1.1) is locally contained in a C^1 totally real submanifold of M [3]. Therefore we shall say that a compact subset K of M is totaly real if it is of the form (1.1).

1.1 Theorem. Let M be a Stein manifold and K a compact totally real subset of M that is $\mathcal{O}(M)$-convex. Then every sufficiently small C^2 perturbation of K in M is also $\mathcal{O}(M)$-convex.

We need to specify what we mean by a small C^2 perturbation of K. We embed the Stein manifold M in a Euclidean space \mathbb{C}^n [4, p. 125]. Let U be an open neighborhood of K in \mathbb{C}^n, and denote by E the Banach space $C^2(U)^n$ of all n-tuples of complex valued functions $\Psi = (\Psi_1, \ldots, \Psi_n)$ of class C^2 on U which have finite norm

$$\|\Psi\|_E = \sum_{j=1}^n \sup \left\{ |D^\alpha \Psi_j(z)| : z \in U, |\alpha| \leq 2 \right\}.$$

Theorem 1.1 asserts that the set $\Psi(K)$ is $\mathcal{O}(M)$-convex for each Ψ in an open neighborhood of the identity map in E such that $\Psi(K) \subset M$.

1.2 Corollary. Let M be a Stein manifold, let N be a manifold of class C^2 and let B be an open neighborhood of 0 in some \mathbb{R}^m. Suppose that $F: N \times B \to M$ is a C^2 map such that $F_0 = F(\cdot, 0)$ is a totally real embedding of N in M. If K is a compact subset of N such that $F_0(K)$ is $\mathcal{O}(M)$-convex, then $F_t(K)$ is $\mathcal{O}(M)$-convex for all t in a neighborhood of 0 in \mathbb{R}^m. (Here, $F_t = F(\cdot, t)$.)

Example 2. If Σ is a totally real affine subspace of \mathbb{C}^n, then every compact subset K of Σ is polynomially convex. This follows from the Stone-Weierstrass approximation theorem and from the fact that the general linear group $GL(n, \mathbb{C})$ acts transitively on the set of totally real subspaces of \mathbb{C}^n of dimension k for each $1 \leq k \leq n$. Hence, by Theorem 1.1, every small C^2 perturbation of a compact subset $K \subset \Sigma$ is polynomially convex.

We shall consider the same question in the case when K is a subset with nonempty interior in a Stein manifold. Suppose that D is an open relatively compact subset of M whose topological boundary $\overline{D} \setminus D$ contains a strictly pseudoconvex hypersurface Γ such that D lies on the convex side of Γ. More precisely, we assume
that there is an open subset V of M and a strictly plurisubharmonic function $\rho: V \to \mathbb{R}$ of class C^2 such that

(i) $D \cap V = \{ x \in V | \rho(x) < 0 \}$,

(ii) $\Gamma \cap V = \{ x \in V | \rho(x) = 0 \} \subset \Gamma$, and

(iii) $d\rho \neq 0$ on the set $\Gamma \cap V$.

We define the support of a diffeomorphism $\Psi: M \to M$ to be the closure of the set $\{ x \in M | \Psi(x) \neq x \}$ where Ψ differs from the identity map.

1.3 Theorem. Let D be an open relatively compact subset of a Stein manifold M that satisfies the properties (i), (ii) and (iii) above. If the set $K = D$ is $\mathcal{O}(M)$-convex, then for every sufficiently small C^2 perturbation $\Psi: M \to M$ supported in V the set $\Psi(K)$ is also $\mathcal{O}(M)$-convex.

1.4 Corollary. If D is a relatively compact strictly pseudoconvex domain in a Stein manifold M such that D is $\mathcal{O}(M)$-convex, then every sufficiently small C^2-perturbation of D in M is also $\mathcal{O}(M)$-convex.

In §2 we prove Theorem 1.1 and Corollary 1.2; in §3 we prove Theorem 1.3 and Corollary 1.4.

I wish to thank Professor Edgar Lee Stout for several helpful conversations.

2. Polynomial convexity of totally real sets.

Proof of Theorem 1.1. If we embed the Stein manifold M in a complex Euclidean space \mathbb{C}^n [4], then a compact subset K of $M \subset \mathbb{C}^n$ is $\mathcal{O}(M)$-convex if and only if it is polynomially convex. Therefore it suffices to prove the theorem in the case when $M = \mathbb{C}^n$. Let U be an open subset of \mathbb{C}^n, ρ a nonnegative strictly plurisubharmonic function on U, and let $K = \{ z \in U | \rho(z) = 0 \}$ be a compact polynomially convex subset of \mathbb{C}^n. Choose a smooth function χ on \mathbb{C}^n, $0 \leq \chi \leq 1$, such that $\chi = 1$ on a neighborhood of K and $\chi = 0$ outside a compact subset of U. Let $E = C^2(U)^n$ be the Banach space with the norm (1.2). Given a $\psi \in E$ we consider the map $\Psi: \mathbb{C}^n \to \mathbb{C}^n$ given by

\[
\Psi(z) = z + \chi(z)\psi(z).
\]

Clearly Ψ is proper. If the E-norm of ψ is sufficiently small, then Ψ is also regular and hence a covering projection. Since Ψ is one-to-one outside a compact subset of \mathbb{C}^n, it has only one sheet and therefore it is a diffeomorphism of \mathbb{C}^n onto \mathbb{C}^n. Every small perturbation of K can be achieved within U with a map of the form (2.1).

Choose a neighborhood V of K, \overline{V} contained in U, such that $\chi = 1$ on a neighborhood of \overline{V}. There exists a C^∞ strictly plurisubharmonic exhaustion function ϕ on \mathbb{C}^n such that $\phi < 0$ on the set K but $\phi > 0$ on $\mathbb{C}^n \setminus V$ [4, p. 110]. Choose a C^∞ function $h: \mathbb{R} \to [0, \infty)$ that is equal to 0 on $(-\infty, 0]$ and is strictly convex on $(0, \infty)$. Then the function

\[\rho' = \chi \circ \rho + ch \circ \phi: \mathbb{C}^n \to [0, \infty)\]

is a strictly plurisubharmonic exhaustion function of class C^2 on \mathbb{C}^n provided that the constant $c > 0$ is chosen sufficiently big, and $K = \{ z \in \mathbb{C}^n | \rho'(z) = 0 \}$.
If $\psi \in E$ is small, the function $\tau = \rho' \cdot \Theta^{-1}$ is a small C^2 perturbation of ρ', and $\tau = \rho'$ outside a large compact subset B of C^n. Hence the Levi form $L_{\rho'} = \sum (\partial^2 \rho / \partial z_i \partial \bar{z}_k) dz_i \otimes d\bar{z}_k$ of ρ is a small perturbation of the Levi form $L_{\rho'}$ of ρ', and they agree outside B. Since the eigenvalues of $L_{\rho'}$ are positive on the compact set B, the same is true for L_{τ}. This says that τ is a nonnegative strictly plurisubharmonic exhaustion function on C^n. The approximation theorem [4, p. 119, Theorem 5.2.8] implies that the zero set of τ is polynomially convex. Since $\Psi(K) = \{ z \in C^n | \tau(z) = 0 \}$, Theorem 1.1 is proved.

Proof of Corollary 1.2. We may take $M = C^n$ as before. Choose an open relatively compact neighborhood V of K in N. For each $t \in \mathbb{R}^m$ close to 0 the set $V_t = F_t(V)$ is a totally real submanifold of C^n, and the map $\Phi_t: V_0 \to V_t$, $\Phi_t = F_t \circ F_t^{-1}$, is close to the identity map on V_0 in the C^2-sense. Since $\Phi_t(F_0(K)) = F_t(K)$, it suffices to show that there is an open neighborhood U of $F_0(K)$ such that for each t the map Φ_t can be extended to a map Ψ_t on U that is close to the identity in the C^2-sense on U.

The map $\phi_t(z) = \Phi_t(z) - z$, $z \in V_0$, is small in the C^2-sense. Using a smooth partition of unity we extend ϕ_t to a C^2 map ψ_t on U such that

$$\|\psi_t\|_{C^2(U)} \leq c \|\phi_t\|_{C^2(V_0)},$$

where the constant c is independent of t. The map $\psi_t(z) = z + \psi_t$, $z \in U$, is the desired extension of Φ_t. Corollary 1.2 now follows from Theorem 1.1.

3. Perturbations on strictly pseudoconvex boundary points. We shall first consider the perturbations of D that are supported in small subsets of V. Fix a point $x_0 \in \Gamma \cap V$, an open neighborhood V_0 of x_0 such that $V_0 \subset V$, and a strictly plurisubharmonic defining function ρ for $D \cap V_0$. According to [1, p. 530, Proposition 1] there exist a bounded strictly convex open set $C \subset C^n (n = \dim M)$ with C^2 boundary, a holomorphic map $\Phi: M \to C^n$ and an open set $U \subset M$, $x_0 \in U \subset \subset V_0$, such that the following hold:

(i) $\Phi(D) \subset C$,
(ii) $\Phi(\{ z \in U | \rho(z) > 0 \}) \subset C^n \setminus \overline{C}$,
(iii) $\Phi^{-1}(\Phi(U)) = U$, and
(iv) the restriction $\Phi|_{U}$ is regular and one-to-one.

Let W be a neighborhood of x_0 such that $\overline{W} \subset U$. If Ψ is a small C^2 perturbation of D supported in W, then $\tilde{\Psi} = \Phi \circ \Psi \circ \Phi^{-1}|_{\Phi(U)}$ is a small C^2 perturbation of C supported in $\Phi(U)$. We choose Ψ so close to the identity map that the set $\tilde{\Psi}^*(D)$ is still convex. For every point $x \in U \setminus \tilde{\Psi}(D)$ we have $\Phi(x) \in C^n \setminus \overline{C}$ and hence there is a holomorphic function h on C^n such that $h(\Phi(x)) = 1$, but $|h| < \frac{1}{2}$ on $\tilde{\Psi}(C)$. Because of (i) and (iii) above it follows that the point x does not lie in the $\partial(M)$-hull of $\tilde{\Psi}^{-1}(D)$.

To simplify the notation we write $K = \overline{D}$ and $K' = \overline{\Psi(D)}$. The conclusion we just made is that

$$\tilde{K} \cap U = K' \cap U,$$
where \hat{K}' is the $\partial(M)$-convex hull of K'. Since the support of Ψ is contained in W, we have $K' \setminus W = K \setminus W$, and hence (3.1) implies

\[(3.2)\quad \hat{K}' \cap (U \setminus W) = K \cap (U \setminus W).
\]

We shall prove that $\hat{K}' = K'$. Assume that $\hat{K}' \neq K'$ in order to reach a contradiction. Because of (3.1) the two sets can differ only outside U. Since $K \setminus U = K' \setminus U$, the set $\hat{K}' \setminus U$ is strictly larger than $K \setminus U$. The polynomially convex set K has a basis of open neighborhoods Ω that are smoothly bounded strictly pseudoconvex domains with $\partial(M)$-convex closure $\overline{\Omega}$. Thus we may choose Ω with these properties that does not contain the set $\hat{K}' \setminus U$. By an embedding theorem for strictly pseudoconvex domains due to Fornaess [1, p. 543] and Khenkin [5, p. 668] there exists a holomorphic embedding $F: M \to \mathbb{C}^N$ for some $N \in \mathbb{Z}_+$ and a bounded strictly convex domain $B \subset \mathbb{C}^N$ such that $F(\Omega) \subset B$ and $F(M \setminus U \setminus B) \subset \mathbb{C}^N \setminus B$. We may assume that $0 \in B$. Let

\[(3.3)\quad t_0 = \inf \{ t \in \mathbb{R}_+ \mid F(\hat{K}' \setminus U) \subset tB \}
\]

and replace B by t_0B. Then

\[(3.4)\quad F(\hat{K}' \setminus U) \subset B,
\]

and there is a point $p \in F(\hat{K}' \setminus U) \cap bB$. The set $A = \mathbb{C}^N \setminus \overline{F(W)}$ is open and contains the point p. Moreover, it follows from (3.3) and (3.4) that $F(\hat{K}') \cap A \subset B$. This means that locally near p the polynomially convex set $F(\hat{K}') = F(K')$ lies on the convex side of the smooth strictly convex hypersurface bB. According to [1, p. 530] there exists a holomorphic function g defined on a neighborhood of $F(\hat{K}')$ in \mathbb{C}^N such that

$g(p) = 1$ and $|g(q)| < 1$ for $q \in F(\hat{K}') \setminus \{p\}$.

If $\varepsilon > 0$ is sufficiently small, the set

$F(\hat{K}') \cap \{|g| \leq 1 - \varepsilon\} \subset F(K')$

is polynomially convex and contains $F(K')$. This is a contradiction since $F(\hat{K}') = F(K')$ is the polynomially convex hull of $F(K')$. This concludes the proof in the case when the support of the perturbation Ψ is sufficiently small.

It remains to consider the general case. Let Γ' be an open relatively compact subset of $\Gamma \cap V$. Using the methods introduced by Fornaess in [1] we can show that there exist an open set $U \subset \subset V$ such that $U \cap \Gamma' = \Gamma$, a holomorphic map $F: M \to \mathbb{C}^N$ and a bounded strictly convex domain $C \subset \mathbb{C}^N$ with C boundary such that the properties (i)–(iv) above hold. Moreover, the map F is transversal to bC at every point $x \in \Gamma'$. It follows that every small perturbation of D supported in U can be effected by a small perturbation of C supported in a neighborhood of $F(\Gamma')$. The proof can be completed in the same way as above. We omit the details.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

Current address: Univerza E. K. V Ljubljani, FNT-Matematika, Jadranska 19, 61 000 Ljubljana, Yugoslavia