The length of a set in the sphere whose polynomial hull contains the origin*

by Franc Forstnerič

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Communicated by Prof. J. Korevaar at the meeting of February 24, 1992

ABSTRACT

Let X be a compact subset of the unit sphere in the complex Euclidean space \mathbb{C}^n such that the origin $0 \in \mathbb{C}^n$ belongs to the polynomial hull of X. Assuming that X is rectifiable in the Hausdorff $(\mathbb{R}^1,1)$-sense, it is shown that the length of X is at least $2n$.

INTRODUCTION

It is well known that every pure one-dimensional complex variety $A \subset \mathbb{C}^n$ with reasonably "nice" boundary bA satisfies the isoperimetric inequality

$$(\text{Length}(bA))^2 \leq 4\pi \text{Area}(A).$$

Moreover, if A contains the origin $0 \in \mathbb{C}^n$ while bA lies outside the ball $B(r) = \{z \in \mathbb{C}^n : |z| < r\}$ of radius r, then $\text{Area}(A) \geq \pi r^2$ and therefore

$$\text{Length}(bA) \geq 2\pi r.$$

(See Chirka [6], p. 180 and p. 195, and Bishop [4].) The same inequalities hold if A is an immersed minimal surface with connected boundary; see Section 7.3 in [5]. The constants in these inequalities are the best possible.

H. Alexander [3] extended the isoperimetric inequality to closed Jordan curves $X \subset \mathbb{C}^n$: If X is not polynomially convex, then the set $A = \bar{X} \setminus X$ is an irreducible one-dimensional subvariety of $\mathbb{C}^n \setminus X$, and the isoperimetric ine-

*Supported in part by the Research Council of the Republic of Slovenia.
quality holds when the length and the area are computed using the Hausdorff measures \mathcal{H}^1 resp. \mathcal{H}^2 on \mathbb{C}^n. (For Hausdorff measures see Federer [7, p. 171].) In particular, if X is a closed Jordan curve in the unit sphere $S = \{ z \in \mathbb{C}^n : |z| = 1 \}$ whose polynomial hull \tilde{X} contains the origin $0 \in \mathbb{C}^n$, then we have

$$\mathcal{H}^1(X) \geq 2\sqrt{\pi}(\mathcal{H}^2(\tilde{X}))^{1/2} \geq 2\pi.$$

Recall that the polynomial hull of X is the set

$$\tilde{X} = \{ z \in \mathbb{C}^n : |f(z)| \leq \sup_{X} |f| \text{ for all } f \in \mathcal{O}(\mathbb{C}^n) \}.$$

In this article we shall consider the following question that was raised by Stout [8, problem 4.2.2]:

If $X \subset S$ is a compact set in the unit sphere whose polynomially convex hull \tilde{X} contains the origin $0 \in \mathbb{C}^n$, must the length of X be at least 2π?

In [11] Stout proved a weaker inequality $\mathcal{H}^1(X) \geq \sqrt{2}\pi$ that improved the previously known result $\mathcal{H}^1(X) \geq 2$ by Sibony [9]. (The result of Sibony applies also to sets that are not contained in a sphere.)

Here we give a very simple proof of the inequality

$$(*) \quad \mathcal{H}^1(X) \geq 2\pi \text{ when } X \subset S \text{ and } 0 \in \tilde{X}$$

for $(\mathcal{H}^1,1)$-rectifiable compact sets $X \subset S$. Together with a new result of Mark Lawrence this settles the general case as well.

THE RESULT

DEFINITION. (Federer [7, p.251].)

(a) A set $X \subset \mathbb{R}^k$ is 1-rectifiable if it is the image of a bounded subset $U \subset \mathbb{R}$ under a Lipschitz continuous mapping $f: U \rightarrow \mathbb{R}^k$.

(b) X is $(\mathcal{H}^1,1)$-rectifiable if $\mathcal{H}^1(X) < \infty$ and almost all of X (with respect to the length \mathcal{H}^1) can be covered by a countable union of 1-rectifiable sets.

Our main result is

THEOREM. If X is a compact $(\mathcal{H}^1,1)$-rectifiable subset of the unit sphere $S \subset \mathbb{C}^n$ such that the origin $0 \in \mathbb{C}^n$ belongs to the polynomial hull \tilde{X}, then $\mathcal{H}^1(X) \geq 2\pi$.

Clearly the result can be stated for the ball $r \mathbb{B}$ of radius r: If $X \subset rS$ is compact and $(\mathcal{H}^1,1)$-rectifiable, and if $0 \in \tilde{X}$, then $\mathcal{H}^1(X) \geq 2\pi r$.

The isoperimetric inequality does not hold in the context of our Theorem. Namely, Alexander constructed in [2] a compact disconnected set $X \subset \mathbb{C}^2$ of finite length whose polynomial hull \tilde{X} has infinite area. His set X is not highly pathological, it consists of a countable disjoint union of real-analytic simple closed curves, and $A = \tilde{X} \setminus X$ is countable union of analytic subsets of $\mathbb{C}^2 \setminus X$. Obviously X is $(\mathcal{H}^1,1)$-rectifiable.
It is unknown whether the isoperimetric inequality holds for compact connected sets \(X \subset \mathbb{C}^n \) of finite length. Recall that \(A = \hat{X} \setminus X \) is then a pure one-dimensional analytic subvariety of \(\mathbb{C}^n \setminus X \) (if not empty) according to Alexander [1]. For smooth curves \(X \) this had been proved by Stolzenberg [10].

Remark added to the proof. It suffices to prove the inequality (*) for sets \(X \subset S \) of finite length \((\mathcal{H}^1(X) < \infty) \) that are minimal, in the sense that no proper compact subset of \(X \) contains 0 in its polynomial hull. Recently Mark Lawrence (private communication) informed me of his new result that such a set is necessarily \((\mathcal{H}^1, 1) \)-rectifiable. Together with our theorem this implies

Corollary. If \(X \) is a compact subset of \(S \) and \(0 \in \hat{X} \) then \(\mathcal{H}^1(X) \geq 2\pi \).

Also, after the completion of the first version of this article, H. Alexander [12] and N. Poletski (private communication) informed me that they had independently proved the estimate (*) by different methods.

Proof of the Theorem.

The result will follow from the following Lemma and an integral geometric formula (Crofton formula) from Federer [7, p. 284].

Lemma. If \(X \) is a compact subset of \(\mathbb{C}^n \setminus \{0\} \) of finite length such that \(0 \in \hat{X} \), then almost every real hyperplane \(\Sigma \subset \mathbb{C}^n \) passing through the origin intersects \(X \) at least at two points.

Here, "almost every" is meant with respect to the volume measure on the Grassman manifold of real hypersurfaces \(0 \in \Sigma \subset \mathbb{C}^n \).

Proof. Since \(X \) has finite length and \(0 \notin X \), Fubini's theorem implies that almost every complex hyperplane \(L \subset \mathbb{C}^n \) passing through 0 misses \(X \). Here, "almost every" refers to the volume measure on the Grassman manifold of complex \((n-1)\)-dimensional subspaces of \(\mathbb{C}^n \).

Fix such a hyperplane \(L \), and let \(\Sigma \) be any real hyperplane in \(\mathbb{C}^n \) containing \(L \). Then \(L \) splits \(\Sigma \) in two open half-planes \(\Sigma_+ \) and \(\Sigma_- \).

We claim that both \(\Sigma_+ \) and \(\Sigma_- \) intersect \(X \). To see this, let \(\pi : \mathbb{C}^n \to L^\perp \) be the orthogonal projection onto the complex line \(L^\perp \) orthogonal to \(L \). If \(X \) is disjoint from \(\Sigma_+ \) then \(\pi(X) \subset L^\perp \) is disjoint from the real half-line \(\pi(\Sigma_+) \), hence \(0 \in L^\perp \) lies in the unbounded component of \(L^\perp \setminus \pi(X) \). Thus \(0 \) is not in the polynomial hull of \(\pi(X) \) in \(L^\perp \) and hence \(0 \) is not in the hull of \(X \) in \(\mathbb{C}^n \), a contradiction. (This also follows from Oka's criterion for polynomial convexity [10, p. 263]: since \(0 \) belongs to \(\hat{X} \), we can not move \(L \) continuously to infinity without hitting \(X \).)

This shows that every such real hyperplane \(\Sigma \) intersects \(X \) at least two points. Since the remaining set of real hyperplanes through the origin in \(\mathbb{C}^n \) has measure zero, the lemma is proved.
We now apply Theorem 3.2.48 in Federer [7, p. 284] as follows. Let \(B \) be the intersection of a real hyperplane through the origin in \(\mathbb{C}^n \) with the sphere \(S \). By our hypothesis \(X \) is \((\mathcal{H}^1, 1) \) rectifiable, it is \(\mathcal{H}^1 \) measurable since Hausdorff measures are Borel regular, and \(\mathcal{H}^1(X) < \infty \). Clearly \(B \) is \(m=(2n-2) \)-rectifiable and \(\mathcal{H}^m \)-measurable since it is an \(m \)-manifold. Applying Theorem 3.2.48 in [7] to the constant functions \(\alpha = 1 \) on \(A = X \) and \(\beta = 1 \) on \(B \) we get

\[
\int \int \mathcal{H}^0 d\theta_{2n}(g) = C \cdot \mathcal{H}^1(X) \cdot \mathcal{H}^m(B)
\]

for some constant \(C \) depending only on \(m \) and \(n \).

Recall that \(\mathcal{H}^0 \) is just the counting measure. The lemma implies \(\mathcal{H}^0(X \cap g(B)) \geq 2 \) for almost all \(g \in \Omega(2n) \) with respect to the volume measure \(\theta_{2n} \). Hence we get

\[
\mathcal{H}^1(X) \geq 2\theta_{2n}(\Omega(2n))/C\mathcal{H}^m(B).
\]

To calculate the constant on the right hand side we choose \(X \) to be the intersection of \(S \) with a complex line through the origin, hence \(\mathcal{H}^1(X) = 2\pi \). In this case \(X \cap g(B) \) contains exactly two points for most \(g \in \Omega(2n) \), hence the inequality above is actually an equality. Thus the value of the right hand side equals \(\mathcal{H}^1(X) = 2\pi \).

This completes the proof of the Theorem.

REFERENCES