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0 Introduction

In this paper we prove the Oka principle for mapsX → Y from Stein mani-
foldsX to complex manifolds Y which admit a finite dominating collection
of sprays (such manifolds are called subelliptic), as well as the correspond-
ing result for sections of submersions. Our main result, Theorem 1.1, extends
the results of Oka [O], Grauert [Gr1, Gr2] and Gromov [G]. We also prove a
result on removing intersections of holomorphic maps from Stein manifolds
with closed complex subvarieties with subelliptic complements (Sect. 6).

We begin with a brief survey. In 1939 K. Oka [O] proved that a second
Cousin problem on a domain of holomorphy is solvable if it is solvable by
continuous functions. Oka’s result has the following equivalent formulation:
If h:Z → X is a principal holomorphic fiber bundle with fiber C∗ = C\{0}
over a domain of holomorphy (or a Stein manifold) then every continuous
section of h is homotopic to a holomorphic section. In a seminal work of
1957 H. Grauert [Gr1, Gr2] proved Oka’s theorem with C∗ replaced by
any complex Lie group or complex homogeneous space, with the stronger
conclusion that the inclusion Holo(X;Z) ↪→ Cont(X;Z) of the space
of holomorphic sections into the space of continuous sections is a weak
homotopy equivalence (it induces isomorphisms of all homotopy groups of
the two spaces). This is known as the (parametric) Oka-Grauert principle.
For related results see [C], [FR] and [HL].

In 1989 M. Gromov [G] introduced the concept of a dominating spray and
outlined a proof of the parametric Oka principle for sections of holomorphic
submersions h:Z → X onto a Stein base X which admit fiber dominating
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sprays over small open subsets ofX . (Proofs can be found in [FP1] for fiber
bundles and in [FP2, FP3] for submersions).

In this paper we introduce a more flexible and apparently weaker con-
dition which also implies the parametric Oka principle. Recall that a spray
on a complex manifold Y is a holomorphic map s:E → Y from the total
space of a holomorphic vector bundle p:E → Y such that s(0y) = y for all
y ∈ Y . Y is called subelliptic if it admits finitely many sprays sj :Ej → Y
such that for any y ∈ Y the vector subspaces (dsj)0y(Ej,y) ⊂ TyY together
span TyY (Definition 2). We prove the parametric Oka principle for maps
from any Stein manifold to any subelliptic manifold, as well as for sections
of subelliptic submersions over a Stein base (Theorem 1.1). This extends
Gromov’s theorem [G, 4.5 Main Theorem] which assumes the existence of
a dominating spray s:E → Y satisfying (ds)0y(Ey) = TyY for all y ∈ Y
(such manifold Y is called elliptic). There is no immediate way of creating
dominating sprays from dominating families of sprays unless the bundles
Ej are trivial.

Subellipticity is easier to verify than ellipticity and consequently it en-
ables us to extend the Oka principle to a wider class of target manifolds. For
instance, ifA is a closed complex (=algebraic) subvariety of complex codi-
mension at least two in a complex projective space CIPn (or in a complex
Grassmanian) then its complement is subelliptic and hence the Oka princi-
ple holds for maps from Stein manifolds to CIPn\A (Proposition 1.2). We
don’t know whether this complement is elliptic in general. (By removing a
hyperplane we obtain Cn\A which is elliptic [G, FP1].) On projective alge-
braic manifolds subellipticity can be localized: If each point y ∈ Y admits
a Zariski open neighborhood which is algebraically subelliptic then Y is
subelliptic (Proposition 1.3). No such result is known about ellipticity.

Subellipticity is equivalent to the existence of a dominating composed
spray (Lemma 2.4). Even though Gromov discussed composed sprays in [G]
(see in particular the Sects. 1.3, 1.4.F. and 2.9.A.), this condition has not
been formulated before. On a Stein manifoldY subellipticity is equivalent to
ellipticity (Lemma 2.2) and both conditions are implied by the validity of the
Oka principle for maps X → Y from Stein manifolds X with second order
interpolation along closed complex submanifolds X0 ⊂ X (see [G, 3.2.A]
or [FP3, Proposition 1.2]). It is not clear whether the validity of the Oka
principle implies subellipticity (or ellipticity) for all complex manifolds.

1 The results

Leth:Z → X be a holomorphic submersion ontoX . Given a subsetU ⊂ X
we write Z|U = h−1(U). For z ∈ Z we denote by V TzZ the kernel of dhz

(which equals the tangent space to the fiber h−1(h(z)) at z) and call it the
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vertical tangent space ofZ at z. If p:E → Z is a holomorphic vector bundle
we denote by 0z ∈ E the base point in the fiberEz = p−1(z). At each point
z ∈ Z we have a natural splitting T0zE = TzZ ⊕ Ez .

Definition 1. [G, sec. 1.1.B] A spray associated to a holomorphic sub-
mersion h:Z → X (an h-spray) is a triple (E, p, s), where p:E → Z is
a holomorphic vector bundle and s:E → Z is a holomorphic map such
that for each z ∈ Z we have s(0z) = z and s(Ez) ⊂ Zh(z). The spray s is
dominating at the point z ∈ Z if the derivative ds:T0zE → TzZ maps Ez

surjectively onto V TzZ = ker dhz . A spray on a complex manifold Y is
a spray associated to the trivial submersion Y → point.

Definition 2. A holomorphic submersion h:Z → X is called subelliptic if
each point in X has an open neighborhood U ⊂ X such that h:Z|U → U
admits finitely many h-sprays (Ej , pj , sj) for j = 1, . . . , k satisfying

(ds1)0z(E1,z) + (ds2)0z(E2,z) · · · + (dsk)0z(Ek,z) = V TzZ (1.1)

for each z ∈ Z|U . A collection of sprays satisfying (1.1) is said to be domi-
nating at z. A submersion h is elliptic if the above holds with k = 1, i.e., if
any point x ∈ X has a neighborhoodU ⊂ X such that h:Z|U → U admits
a dominating spray. A complex manifold Y is elliptic (resp. subelliptic) if
the trivial submersion Y → point is such.

Thus every elliptic submersion is also subelliptic. Examples of elliptic
manifolds and submersions may be found in [G] (see especially Sects. 0.5.B
and 3.4.F) and in [FP1]. The exponential map exp:g → G on any complex
Lie group G gives a dominating spray s:E = G × g → G, s(g, t) =
exp(t)g.

1.1 Theorem. If h:Z → X is a subelliptic submersion onto a Stein man-
ifold X then the inclusion ιh:Γholo(X;Z) ↪→ Γcont(X;Z) of the space of
holomorphic sections ofh into the space of continuous sections is a weak ho-
motopy equivalence. (Both spaces are endowed with the topology of uniform
convergence on compacts.)

Theorem 1.1 is the main result of this paper. It implies in particular that
maps X → Y from any Stein manifold X to any subelliptic manifold Y
satisfy the parametric Oka principle (since mapsX → Y correspond to sec-
tions of the projectionX×Y → X). The proof of Theorem 1.1 will show in
addition that sections of any subelliptic submersion h:Z → X onto a Stein
base X satisfy the conclusion of Theorem 1.4 in [FP3] (which is equivalent
to the Ell∞ property introduced by Gromov [G, sec. 3.1.]). This includes
uniform approximation of holomorphic sections on compact holomorphi-
cally convex subsets ofX and interpolation of holomorphic sections on any
closed complex subvariety X0 ⊂ X . The extension in [F2] to multi-valued
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sections of ramified mappings h:Z → X onto a Stein space X also holds
when h is a subelliptic submersion outside its ramification locus.

We now give examples of subelliptic manifolds (for proofs see Sect. 5).

1.2 Proposition. (a) If Y is a complex Grassman manifold and A ⊂ Y is
a closed complex(=algebraic) subvariety of codimension at least two then
Y \A is subelliptic. This holds in particular for Y = CIPn.

(b) Let h:Z → X be a holomorphic fiber bundle whose fiber is CIPn or a
complex Grassmanian. IfA ⊂ Z is a closed complex subvariety whose fiber
Ax = A ∩ Zx has codimension at least two in Zx for any x ∈ X then the
restricted submersion h:Z\A → X is subelliptic.

The subvarieties in Proposition 1.2 have codimension at least two. The
Oka principle fails in general for maps into complements of complex hyper-
surfaces or non-algebraic subvarieties of any dimension (see the examples
in [FP3]).

Recall that a projective algebraic manifold is a closed complex sub-
manifold of a complex projective space and a quasi-projective manifold is
a Zariski open set in a projective manifold. We may speak of algebraic vector
bundles and algebraic sprays on such manifolds, and algebraic subelliptic-
ity can be localized as follows (compare with Lemma 3.5.B. and 3.5.C. in
[G]).

1.3 Proposition. If Y is a quasi-projective algebraic manifold such that
each point y ∈ Y has a Zariski open neighborhood U ⊂ Y and algebraic
sprays sj :Ej → Y (j = 1, 2, . . . , k), defined on algebraic vector bundles
pj :Ej → U and satisfying

(ds1)0y(E1,y) + (ds2)0y(E2,y) · · · + (dsk)0y(Ek,y) = TyY,

then Y is subelliptic.

No such localization result is known for ellipticity. Note that the condition
in Proposition 1.3 is equivalent to (1.1) when h is the trivial submersion
Y → point. The ranges of the sprays sj need not be contained in U .

1.4 Proposition. If Y is a (quasi-) projective algebraic manifold with an
algebraic spray s:E → Y which is a submersion of E onto Y then the
complement Y \A of every algebraic subvariety of codimension at least two
is subelliptic.

1.5 Corollary. If G is a complex algebraic Lie group whose exponential
map is algebraic then the complement G\A of any algebraic subvariety
A ⊂ G of codimension at least two is subelliptic. This holds in particular if
G is nilpotent and simply connected.



The Oka principle for sections of subelliptic submersions 531

Proof of Corollary 1.5. The exponential map exp:g → G is locally biholo-
morphic and hence the spray s:E = G × g → G, s(g, t) = exp(t)g, is a
submersion of E onto G. If G and exp are algebraic then s is algebraic and
the result follows from Proposition 1.4. This is the case for simply connected
nilpotent Lie groups. ♠
Question. Let Y and A be as in Proposition 1.4. Is Y \A always elliptic?

1.6 Proposition. Let π: Ỹ → Y be an unramified holomorphic covering
map. If Y is subelliptic (resp. elliptic) then so is Ỹ .

A result of this kind is mentioned in [G, 3.5.B”] (see (∗∗) on p. 883 of
[G]). It is not clear whether the converse is true as well, i.e., does (sub-)
ellipticity of Ỹ imply the same property for Y ? A good test case may be
complex tori T = Cn/Γ where Γ ⊂ Cn is a lattice of real rank 2n. Denote
by π: Cn → T the quotient map (which is a universal covering of T ). The
spray s: Cn × Cn → Cn, s(z, t) = z + t, is Γ -equivariant and hence it
passes down to a spray on T . Removing the point p0 = π(0) ∈ T we obtain
a covering map π: Cn\Γ → T\{p0}. It is easily seen that for n ≥ 2 the
lattice Γ is a tame discrete subset of Cn in the sense of Rosay and Rudin
[RR] and hence Cn\Γ admits a dominating spray according to Lemma 7.1
in [FP2]. However, these sprays don’t pass to sprays on T\{p0} and it is not
clear whether the latter manifold is subelliptic.
Outline of the paper. Section 2 contains some basic results and construc-
tions with sprays. We show that the domination of a family of sprays is
equivalent to the domination of the associated composed spray. In Sect. 3
we prove a homotopy version of the Oka-Weil approximation theorem for
sections of submersions onto a Stein base which admit a finite dominating
collection of sprays (Theorem 3.1). In Sect. 4 we prove Theorem 1.1. In
Sect. 5 we prove Propositions 1.2, 1.3, 1.5 and 1.6. In Sect. 6 we use the
methods developed in Sect. 4 (and in [FP2, F1]) to prove a result on re-
moving intersections of holomorphic maps X → Y from Stein manifolds
X with any closed complex subvariety A ⊂ Y whose complement Y \A is
subelliptic. Theorem 6.1 contains as special cases the well known theorem
of Forster and Ramspott on complete intersections [FR] as well as Theorem
1.3 from [F1]. The appendix contains some remarks on Gromov’s paper [G].

2 Subellipticity and composed sprays

In this section we first collect some basic results on subelliptic manifolds and
submersions. The constructions in Lemmas 2.1 and 2.3 are due to Gromov
[G]. Recall that a finite collection of sprays sj :Ej → Y (j = 1, 2, . . . , k)
is dominating if the subspaces (dsj)0y(Ej,y) ⊂ TyY together span TyY for
each y ∈ Y (Definition 2).
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2.1 Lemma. If sj :Ej → Y (j = 1, 2, . . . , k) is a dominating collection of
sprays on Y , defined on trivial bundles Ej 	 Y × Cmj , then Y admits a
dominating spray. The analogous result holds for h-sprays.

Proof. We may assume that sj is defined on Y × Cmj for each j =
1, 2, . . . , k. We define sprays s(j):Y × Cm1+...+mj → Y inductively by
s(1) = s1 and

s(j)(y, e1, . . . , ej) = sj(s(j−1)(y, e1, . . . , ej−1), ej), 2 ≤ j ≤ k.

Clearly we have

(ds(k))0y(E
(k)
y ) = (ds1)0y(E1,y) + (ds2)0y(E2,y) · · · + (dsk)0y(Ek,y).

Hence (s1, . . . , sk) is a dominating collection of sprays on Y if and only if
s(k) is a dominating spray. We call s(k) the direct sum of the sprays sj and
write s(k) = s1 ⊕ · · · ⊕ sk. (Observe that this construction is possible only
for sprays defined on trivial bundles.) ♠

2.2 Lemma. Any subelliptic Stein manifold is elliptic. If Z,X are Stein
manifolds then any subelliptic submersion h:Z → X is elliptic.

Proof. Assume that Y is Stein and sj :Ej → Y (j = 1, . . . , k) is a dominat-
ing collection of sprays defined on vector bundles pj :Ej → Y . By Cartan’s
Theorem A [GR] any holomorphic vector bundle over Y is generated by
finitely many global holomorphic sections. This gives for each j a surjec-
tive vector bundle map gj :Y × Cmj → Ej for some large mj ∈ IN. Then
s̃j = sj ◦ gj :Y × Cmj → Y is a spray whose vertical derivative at the
zero section has the same range as that of sj . It follows that s̃1 ⊕ · · · ⊕ s̃k

(defined in Lemma 2.1) is a dominating spray on Y . A similar proof holds
for submersions. ♠

For general sprays one can use the following construction.

Definition 3. (Gromov [G, sec. 1.3]) Let (E1, p1, s1) and (E2, p2, s2) be h-
sprays associated to a holomorphic submersion h:Z → X . The composed
spray (E1#E2, p1#p2, s1#s2) = (E∗, p∗, s∗) is defined by

E∗ = {(e1, e2) ∈ E1 × E2: s1(e1) = p2(e2)},
p∗(e1, e2) = p1(e1), s∗(e1, e2) = s2(e2).

This operation extends to any finite collection of sprays and it in-
cludes iterations of sprays (and of composed sprays). The k-th iteration
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(E(k), p(k), s(k)) of (E, p, s) is

E(k) = {e = (e1, e2, . . . , ek): ej ∈ E for j = 1, 2, . . . , k,
s(ej) = p(ej+1) for j = 1, 2, . . . , k − 1},

p(k)(e) = p(e1), s(k)(e) = s(ek).

Composed sprays are not sprays in the sense of Definition 1 since E1#E2
does not have a natural structure of a holomorphic vector bundle over Z.
Observe thatE1#E2 is the pull-back s∗

1(E2) of the vector bundle p2:E2 →
Z by the first spray map s1:E1 → Z (and hence is a holomorphic vector
bundle over the total space E1 of the bundle p1:E1 → Z). However, the
composed bundle has a well defined zero section and a partial linear structure
on fibers.

2.3 Lemma. If (Ej , pj , sj) for j = 1, . . . , k are h-sprays on Z then the
restriction of the composed bundle E1# · · ·#Ek → Z to any Stein subset
Ω ⊂ Z is isomorphic to the direct sum bundle E1 ⊕ E2 ⊕ · · · ⊕ Ek|Ω .
Explicitly, there exists a biholomorphic map θ: ⊕Ej |Ω → #Ej |Ω which
maps fibers to fibers and preserves the zero section. (The set Ω may be
either an open Stein subset or a Stein subvariety of Z.)

Proof. It suffices to prove this for k = 2 and apply induction. By construc-
tion the composed bundle E1#E2 is the pull-back s∗

1(E2) of the bundle
p2:E2 → Z by the first spray map s1:E1 → Z. Let E′

1 = E1|Ω . Con-
sider the homotopy of holomorphic maps gt:E′

1 → Z, gt(z, e) = s1(z, te)
(t ∈ C). Since Ω is Stein, the total space E′

1 is also a Stein manifold and
hence the pull-back bundlesπt: g∗

t (E2) → E′
1 for t ∈ Care holomorphically

isomorphic to each other according to [Gr2]. Since g0 = p1:E′
1 → Ω and

g1 = s1:E′
1 → Z, we obtain an isomorphism between E1#E2|Ω → E′

1
and π1: p∗

1(E2|Ω) → E′
1. The latter bundle carries the structure of a holo-

morphic vector bundle over Ω isomorphic to E1 ⊕ E2|Ω (with respect to
the projection p1 ◦ π1: p∗

1(E2|Ω) → Ω). This endows E1#E2|Ω with the
structure of the bundle E1 ⊕ E2|Ω . ♠

The notion of being ‘dominating’ (Definition 1) carries over in an obvious
way to composed sprays by requiring the submersivity of the spray map in
the fiber direction along the zero section of the composed bundle. The next
lemma explains the relevance of subellipticity.

2.4 Lemma. Let h:Z → X be a holomorphic submersion. A collection
of h-sprays (Ej , pj , sj) on Z (j = 1, 2, . . . , k) is dominating at z ∈ Z
if and only if the composed h-spray s1# · · ·#sk:E1# · · ·#Ek → Z is
dominating at z.

Proof. Observe that s1# · · ·#sk(z, 0, . . . , ej , . . . , 0) = sj(z, ej) (the vec-
tor ej ∈ Ej,z appears at the j-th spot). Hence the range (in V TzZ) of the
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vertical derivative of s1# · · ·#sk at the point 0z ∈ E1# · · ·#Ek equals
the vector sum of the vertical derivatives of the individual sprays sj at 0z .
The lemma now follows from (1.1) in Definition 2. ♠

2.5 Lemma. The Cartesian product of any finite family of (sub-) elliptic
manifolds is (sub-) elliptic.

Proof. It suffices to prove the result for the product of two manifolds.
Let Y = Y1 × Y2 and let πj :Y → Yj (j = 1, 2) denote the projection
πj(y1, y2) = yj . If (Ej , pj , sj) is a spray on Yj for j = 1, 2, we get a spray
s = s1 ⊕ s2 on the bundle E = π∗

1E1 ⊕ π∗
2E2 → Y given by

s(y1, y2, e1, e2) = (s1(y1, e1), s2(y2, e2)).

If s1 is dominating on Y1 and s2 is dominating on Y2 then s is dominating
on Y . Similarly, if a family of sprays {si: i = 1, . . . , i0} is dominating on
Y1 and a family of sprays {σk: k = 1, . . . , k0} is dominating on Y2 then the
collections si ⊕ σk is dominating on Y . ♠

3 The Oka-Weil theorem for subelliptic submersions

3.1 Theorem. Let h:Z → X be a holomorphic submersion of a com-
plex manifold Z onto a Stein manifold X . Assume that there exist h-sprays
sj :Ej → Z (j = 1, 2, . . . , k) which together dominate at each point z ∈ Z
(i.e., condition (1.1) holds). Let d be a metric on Z inducing the manifold
topology. Suppose that K is a compact holomorphically convex set in X ,
U ⊃ K is an open set and ft:U → Z (t ∈ [0, 1]) is a homotopy of holo-
morphic sections such that f0 extends to a holomorphic section onX . Then
for any ε > 0 there exists a homotopy of holomorphic sections f̃t:X → Z

such that f̃0 = f0 and d(f̃t(x), ft(x)) < ε for x ∈ K and t ∈ [0, 1]. The
analogous result holds for parametrized families of sections.

Proof. For submersions which admit a global dominating h-spray this is
Theorem 4.1 in [FP1], and the general parametric case is Theorem 4.2 in
[FP1]. (See also Theorems 2.1 and 2.2 in [FP3] for the Oka-Weil theorem
with interpolation on a complex subvariety in X .) To prove Theorem 3.1
we replace the dominating h-spray s:E → Z in the proof of Theorem 4.1
in [FP1] by the dominating composed h-spray

s = s1#s2# · · ·#sk:E = E1#E2 · · ·#Ek → Z

(Definition 3). The main point in the proof of Theorem 4.1 in [FP1, p. 135]
is that for some sufficiently large k ∈ IN (depending only on {ft}) there
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exists a homotopy of holomorphic sections ξt (t ∈ [0, 1]) of the iterated
spray bundle E(k)|f0(V ), restricted to f0(V ) ⊂ Z for a sufficiently small
open set V ⊃ K, such that

s(k)(ξt(f0(x))) = ft(x), (x ∈ V, t ∈ [0, 1]). (3.1)

The same is true in the present situation which can be seen as follows. Since
s:E|f0(V ) → Z is a submersion on the zero section, there are a number
t1 > 0 (depending only on {ft}) and a homotopy ξt of holomorphic sections
of the latter bundle satisfying (3.1) for k = 1 and 0 ≤ t ≤ t1. Repeating the
argument (and shrinking V ⊃ K if necessary) we obtain a number t2 > t1
(depending only on {ft}) and a family of sections {ξt: t1 ≤ t ≤ t2} of
E|ft1 (V ) such that ξt1 is the zero section and

s(ξt(ft1(x))) = ft(x), (x ∈ V, t ∈ [t1, t2]).

The two homotopies ξt together for 0 ≤ t ≤ t2 define a homotopy of
sections of the second iteration E(2)|f0(V ) such that (3.1) holds for k = 2
and t ∈ [0, t2]. In finitely many steps (whose number depends only on {ft})
we obtain a family ξt satisfying (3.1).

By Lemma 2.3 E(k) → Z admits the structure of a holomorphic vector
bundle over any Stein subset ofZ. Hence the usual Oka-Weil theorem holds
for sections ofE(k)|f0(X) → f0(X). This gives a homotopy of holomorphic

sections ξ̃t ofE(k)|f0(X) for t ∈ [0, 1] such that ξ̃t approximates ξt uniformly

on f0(K) for each t ∈ [0, 1] and ξ̃0 is the zero section. The homotopy

f̃t(x) = s(k)(ξ̃t(f0(x))) (x ∈ X, t ∈ [0, 1])

of sections of h:Z → X then satisfies Theorem 3.1. Similarly one proves
the parametric version of Theorem 3.1 (see Theorem 4.2 in [FP1]).

4 Proof of Theorem 1.1

We shall follow the proof of Theorem 1.5 in [FP2] (or Theorem 1.4 in
[FP3]) and explain the necessary modifications. The basic problem is to
deform a continuous section of h:Z → X to a holomorphic section. The
construction proceeds through a sequence of modifications in which we
obtain holomorphic sections over a family of open subsets which increase
to X . The proof has two essential ingredients:

(1) Solution of the modification problem explained below, and
(2) An inductive construction of a sequence of holomorpic complexes (in

the terminology of [FP2, FP3]) which converges uniformly on compacts
in X to a global holomorphic section.
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Part (2) (globalization) uses the solution of part 1 and is explained in Sect. 5
of [FP2] or (with slightly less details) in [FP3]. This part does not require
any changes whatsoever. The rest of this section is devoted to part 1.

An ordered pair (A,B) of compact subsets of X is said to be a Cartan
pair in X (Definition 4.1 in [FP2]) if

(i) A, B, and A ∪B have a basis of Stein neighborhoods,
(ii) A\B ∩B\A = ∅, and
(iii) the set C = A ∩B is Runge in B. (C may be empty.)

The modification problem. Let (A,B) be a Cartan pair in X and let
a: Ã → Z, b: B̃ → Z be holomorphic sections of h:Z → X in open
neighborhoods Ã ⊃ A resp. B̃ ⊃ B. Suppose furthermore that bt (t ∈ [0, 1])
is a family of holomorphic sections over C̃ = Ã∩ B̃ such that b0 = b|

C̃
and

b1 = a|
C̃

. Assume that h:Z|
B̃

→ B̃ admits a finite dominating family of h-
sprays. The goal is to construct a holomorphic section ã over a neighborhood
of A ∪ B which is uniformly close to a on A and is obtained from the
initial sections a, b by homotopies over small neighborhoods of A resp. B.
(The analogous modification problem must be considered for parametrized
families of sections as in [FP1]. However, it will suffice to explain the proof
of the basic non-parametric case since the general case follows the same
pattern as in [FP1].)

The modification problem will be solved as in [FP1] by performing the
following steps.
Step 1 (approximation). Find a family of holomorphic sections b̃t (t ∈
[0, 1]) over a neighborhood of B such that b̃0 = b and b̃t approximates bt
over an open neighborhood of C for each t ∈ [0, 1].
Step 2 (gluing). Replace b by b̃1 from Step 1 and ‘glue’ the pair of sections
a, b (which are uniformly close over a neighborhood of C) into ã.

Step 1 has been accomplished by Theorem 3.1 in the present paper (which
replaces Theorem 4.1 in [FP1]). Step 2 is accomplished by the following
result which replaces Theorems 5.1 and 5.5 in [FP1].

4.1 Theorem. Let h:Z → X be a holomorphic submersion onto a Stein
manifoldX and letdbe a metric onZ compatible with the manifold topology.
Let (A,B) be a Cartan pair in X . Assume that B̃ ⊃ B is an open set in
X such that h:Z|

B̃
→ B̃ admits a finite dominating family of h-sprays

(Definition 2). Let a: Ã → Z be a holomorphic section in an open set
Ã ⊃ A. Then for each ε > 0 there is a δ > 0 satisfying the following.
If b: B̃ → Z is a holomorphic section satisfying d(a(x), b(x)) < δ for
x ∈ Ã ∩ B̃, there exists a homotopy at (resp. bt) of holomorphic sections
over a neighborhoodA′ ofA (resp. over a neighborhoodB′ ofB) such that
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a0 = a|A′ , b0 = b|B′ , a1|C′ = b1|C′ for C ′ = A′ ∩B′, and

d(at(x), a(x)) < ε (x ∈ A′, t ∈ [0, 1]);
d(bt(x), b(x)) < ε (x ∈ C ′, t ∈ [0, 1]).

The analogous result holds for parametrized families of sections, i.e., the
conclusion of Theorem 5.5 in [FP1] holds in the present context.

Proof of Theorem 4.1. We shall only prove the basic non-parametric case (for
the parametric case we refer to Theorem 5.5 in [FP1]). Under the stronger
assumption that h admits a dominating spray over B̃ this is Theorem 5.1 in
[FP1] which was reduced to Proposition 5.2 in [FP1] (the model case) by
using Lemma 5.4 in [FP1]. Unfortunately the proof of this lemma does not
hold under the current weaker assumption. The following result is a suitable
replacement. We denote by IBn(ε) the open ball of radius ε in Cn with center
at the origin.

4.2 Lemma. Let U be an open Stein subset of Z and sj :U × IBn(ε) →
Z (j = 1, 2) holomorphic submersions such that sj(z, 0) = z and
h(sj(z, t)) = h(z) for z ∈ U , t ∈ IBn(ε). Let Mj = {(z, t) ∈
U × Cn: ∂tsj(z, 0) · t = 0}. If the bundles M1 → U and M2 → U are
isomorphic then for any relatively compact subset V ⊂⊂ U there exist num-
bers δ > 0, η > 0, with 0 < η < ε, satisfying the following. For any pair of
points z, w ∈ V with h(z) = h(w) and d(z, w) < δ there exists an injective
map φ(z, w, · ): IBn(η) → IBn(ε) which is holomorphic in all variables and
satisfies

s2(w, φ(z, w, t)) = s1(z, t), φ(z, z, 0) = 0.

If s2 is uniformly close to s1 then we may choose φ such that φ(z, z, t) ≈ t.

Proof. SinceU is Stein, there is a holomorphic splittingU×Cn = Mj ⊕Nj

for some holomorphic vector subbundle Nj ⊂ U × Cn. The differential of
sj at the zero section carries Nj isomorphically onto V T (Z)|U and hence
N1 	 N2 	 V T (Z)|U . Since M1 	 M2 by assumption, there exists an
automorphism θ of the trivial bundleU×Cn with θ(M1) = M2 and θ(N1) =
N2. Set s̃2 = s2 ◦ θ:U × Cn → Z. The kernel of ds̃2 at the zero section
equalsM1. If we can find a map φ̃ satisfying the conclusion of the lemma for
s1, s̃2 then the map φ defined by θ(w, φ̃(z, w, t)) = (w, φ(z, w, t)) satisfies
it for s1, s2.

Hence we may assume that M1 = M2 = M and N1 = N2 = N .
We split the fiber vectors t = (t′, t′′) ∈ Mz ⊕ Nz = Cn accordingly (the
splitting depends on the base point z ∈ U ). The inverse function theorem
shows that for each z ∈ U the restriction s1(z, 0′, · ):Nz → Zh(z) maps a
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neighborhood of 0′′ in Nz biholomorphically onto a neighborhood of z in
the fiber Zh(z). The same is true for the map

t′′ ∈ Nz → s1(z, t′, t′′) ∈ Zh(z) (4.1)

for all sufficiently small t′ ∈ Mz . If w ∈ Zh(z) ∩ U is chosen sufficiently
close to z and if t′ ∈ Mz is sufficiently small then by the same argument
the map

t′′ ∈ Nz → s2(w, t′, · ) ∈ Zh(z) (4.2)

maps a neighborhood of 0′′ in Nz biholomorphically onto a neighborhood
of w in the fiber Zh(w) = Zh(z). If w is chosen sufficiently close to z,
the image of the latter neighborhood also contains the point z and we let
φ′(z, w, t′, · ):Nz → Nz be the composition of (4.1) with the (unique) local
inverse of (4.2). The map

(t′, t′′) ∈ Mz ⊕Nz → φ(z, w, t′, t′′) = (t′, φ′(z, w, t′, t′′)),

which is defined for all sufficiently small t = (t′, t′′) ∈ Mz ⊕Nz , satisfies
Lemma 4.2. ♠

We continue with the proof of Theorem 1.1. Write C = A ∩ B. By
Lemma 5.3 in [FP1] there exists a Stein open set V ⊂ Z containing a(A)
and a holomorphic submersion (a local spray) s:V × IBn(η) → Z for some
η > 0 and n ∈ IN such that s(z, 0) = z and h(s(z, t)) = h(z). (It is
important that s is a submersions over a neighborhood of a(C).)

By assumption there exists a dominating family of h-sprays (Ej , pj , σj)
(j = 1, . . . , k) over Z|

B̃
= h−1(B̃). Set E = E1 ⊕ · · · ⊕ Ek and Ẽ =

E1# · · ·#Ek (Sect. 2). Let σ̃: Ẽ → Z|
B̃

denote the composed spray which
is dominating by Lemma 2.4. Choose a Stein open set U ⊂ Z with a(C) ⊂
U ⊂ V ∩ (Z|

B̃
). Lemma 2.3 gives a fiber preserving biholomorphic map

θ:E|U → Ẽ|U . The map σ̃θ:E|U → Z is then a dominatingh-spray defined
on the vector bundle E|U , with values in Z.

Set vj(z) = (ds)0z(∂/∂tj) for z ∈ V and j = 1, . . . , n, where s is a
local spray on V ⊃ a(A) as above and t = (t1, . . . , tn) ∈ Cn. There exist
holomorphic sections ṽj of the bundleE|U → U such that d(σ̃θ)0(ṽj) = vj

for j = 1, . . . , n. (Such sections are unique in any holomorphic subbundle
N ⊂ E|U which is complementary to the kernel of the differential of σ̃θ
at the zero section.) Let τ :U × Cn → E|U be the map τ(z, t1, . . . , tn) =
∑n

j=1 tj ṽj(z) ∈ Ez . The composition σ = σ̃θτ :U × Cn → Z is then a
dominating h-spray on U (with values in Z) satisfying (dσ)0z(∂/∂tj) =
vj(z) = (ds)0z(∂/∂tj) for z ∈ U and j = 1, . . . , n. By Lemma 4.2 there
are δ, η > 0 and a holomorphic map φ satisfying

σ(w, φ(z, w, t)) = s(z, t), φ(z, z, 0) = 0
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for t ∈ IBn(η) and z, w ∈ U with h(z) = h(w) and d(z, w) < δ.
Let b: B̃ → Z be a holomorphic section satisfying d(a(x), b(x)) < δ for

x ∈ Ã∩ B̃. By decreasing δ we may assume b(C) ⊂ U . The problem is that
the spray σ is only defined overU and need not extend holomorphically into
any neighborhood of b(B). To complete the proof we shall approximate σ
uniformly in a neighborhood of b(C) by a spray σ′ which is holomorphic in
neighborhood of b(B). We proceed as follows.

SinceC is Runge inB and both sets have a basis of Stein neighborhoods
in X , there exist open Stein sets U ′ ⊂ W in Z such that U ′ is Runge in
W , b(B) ⊂ W , and b(C) ⊂ U ′ ⊂ U ∩ W . Fix a compact set K ⊂ E|U ′

and let K ′ ⊂ U ′ denote its base projection. By Lemma 2.3 and the Oka-
Weil theorem there is a fiber preserving holomorphic map θ′:E|W → Ẽ|W
which is uniformly close to θ:E|U → Ẽ|U on K. Also there is for each
j = 1, . . . , n a holomorphic section v′

j of E|W which approximates ṽj on
K ′ ⊂ U ′. Define τ ′:W × Cn → E|W by τ ′(w, t) =

∑n
j=1 tjv

′
j(w). Then

the spray σ′ = σ̃θ′τ ′:W × Cn → Z is uniformly close to σ = σ̃θτ on the
set L = (τ ′)−1(K) ⊂ U ′ × Cn. For each U1 ⊂⊂ U ′ we may choose K
sufficiently large to insure that U1 × IBn(3) ⊂ L.

Applying Lemma 4.2 to the pair of spraysσ,σ′ we obtain (after shrinking
U ′ ⊃ b(C)) a holomorphic map ξ:U ′ × IBn(2) → Cn which is uniformly
close to ξ0(w, t) = t on U1 × IBn(1) and which satisfies σ′(w, ξ(w, t)) =
σ(w, t) and ξ(w, 0) = 0 (w ∈ U ′, t ∈ IBn(2)). Then

σ′(w, ξ(w, φ(z, w, t))) = σ(w, φ(z, w, t)) = s(z, t)

for any t ∈ IBn(η) and any pair of point z ∈ U , w ∈ U ′ with h(z) = h(w).
Choose open sets A′, B′ ⊂ X satisfying A ⊂ A′ ⊂⊂ Ã, B ⊂ B′ ⊂⊂ B̃,
C ′ = A′ ∩B′, a(A′) ⊂ V , b(B′) ⊂ W , b(C ′) ⊂ U ′. Set

s1(x, t) = s(a(x), t), (x ∈ A′, t ∈ IBn(η));
s2(x, t) = σ′(b(x), t), (x ∈ B′, t ∈ Cn);
ψ(x, t) = ξ(b(x), φ(a(x), b(x), t)), (x ∈ C ′, t ∈ IBn(η)).

Then s2(x, ψ(x, t)) = s1(x, t) for x ∈ C ′ and t ∈ IBn(η). If b is uniformly
close to a on C̃ then (since ξ is close to ξ0(w, t) = t) the map ψ is uni-
formly close to ψ0(x, t) = φ(a(x), a(x), t) (x ∈ C ′, t ∈ IBn(η)). Note that
ψ0(x, 0) = 0 for all x ∈ C ′.

We have thus reduced Theorem 4.1 to Proposition 5.2 in [FP1]. To com-
plete the proof we shrink the setsA′ ⊃ A,B′ ⊃ B and takeα:A′ → IBn(η),
β:B′ → Cn to be holomorphic maps furnished by that proposition, satisfy-
ing ψ(x, α(x)) = β(x) for x ∈ C ′ = A′ ∩B′. Then

s2(x, β(x)) = s2(x, ψ(x, α(x))) = s1(x, α(x)), (x ∈ C ′)
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and hence these expressions define a holomorphic section ã:A′ ∪B′ → Z.
Further details can be found in [FP1]. ♠
A remark on [FP3]. The condition M1 	 M2 (i.e., the kernels of ds1 and
ds2 along the zero section are isomorphic) is necessary for the existence of
a map ψ as above. Although this was not stated explicitly in the proof of
Theorem 5.1 in [FP3], the construction in [FP1] (see especially Lemma 5.4
in [FP1]) produces a pair of submersions s1, s2 for which this condition is
satisfied, and one can apply the proof in [FP3] to such a pair. ♠

5 Subelliptic manifolds

In this section we prove Propositions 1.2, 1.3, 1.5 and 1.6.

Proof of Proposition 1.2. In part (a) we shall give a detailed calculation
only for Y = CIPn and will observe that the same proof applies to complex
Grassmanians. Similar arguments apply to part (b) and we omit the details
(compare with the proof of Corollary 1.8 in [FP2]).

Given an algebraic subvariety A ⊂ CIPn containing no complex hyper-
surfaces we wish to construct a finite dominating family of algebraic sprays
on CIPn\A. We begin by choosing a hyperplane Λ ⊂ CIPn and homoge-
neous coordinates Z = [Z0:Z1: . . . :Zn] on CIPn such that Λ = {Z0 = 0}.
Set Uj = {Z ∈ CIPn:Zj �= 0} 	 Cn for j = 0, 1 . . . , n (hence
CIPn = U0 ∪ Λ). Let L → CIPn denote the holomorphic line bundle
L = [Λ]−1 where [Λ] is the line bundle determined by the divisor of Λ.
(The usual notation is L = OCIPn(−1), see [GH].) L admits holomorphic
trivializations φj :L|Uj → Uj × C with transition maps

φik(Z, t) = φi ◦φ−1
k (Z, t) = (Z, tZi/Zk), (Z ∈ Uik = Ui ∩Uk, t ∈ C).

Choose a vector v ∈ Cn such that the orthogonal projection π:U0 = Cn →
Cn−1 with kernel Cv is proper when restricted to A ∩ U0. (This is the case
precisely when the complex line Cv does not intersect A at any point of
Λ. Since A has codimension at least two, it does not contain Λ and hence
this holds for almost every v.) Then A′ = π(A ∩ U0) ⊂ Cn−1 is a proper
algebraic subvariety of Cn−1. Let p be any nonzero holomorphic polynomial
on Cn−1 which vanishes on A′. Then the map U0 × C → U0 given by

s(z, t) = z + tp(πz)v = z + tf(z) (z ∈ U0, t ∈ C)

is a spray on U0 with ∂
∂ts(z, 0) = p(πz)v = f(z). Although s does not ex-

tend to a spray CIPn×C → CIPn because of singularities inΛ = {Z0 = 0},
it induces a spray s̃:L⊗m → CIPn wherem is the degree of the polynomial p
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andE = L⊗m denotes them-th tensor power of L.E admits trivializations
θi:E|Ui → Ui × C (i = 0, 1, . . . , n) with transition maps

θik(Z, t) = (Z, t(Zi/Zk)m), (Z ∈ Uik, t ∈ C).

Set s̃ = s θ0:E|U0 → CIPn. We claim that s̃ extends to a holomorphic spray
E → CIPn. Indeed, writingZ = [Z0:Z ′] with z = Z ′/Z0, we see that s has
the following expression in the homogeneous coordinates Z ∈ U0 ⊂ CIPn:

s(Z, t) = [1: s(Z ′/Z0, t)] = [1:Z ′/Z0 + tf(Z/Z0)]
= [Z0:Z ′ + tZ0f(Z/Z0)].

Hence we get for k = 1, . . . , n and Z ∈ U0 ∩ Uk

s̃ θ−1
k (Z, t) = s θ0k(Z, t) = s(Z, t(Z0/Zk)m)

= [Z0:Z ′ + t Zm+1
0 Z−m

k f(Z/Z0)].

By the choice of m the function Zm+1
0 Z−m

k f(Z/Z0) vanishes on {Z0 =
0} ∩ Uk and hence s̃ θ−1

k is holomorphic on Uk.
This shows that s̃:E → CIPn is a spray satisfying s̃((U0\A) × C) ⊂

U0\A and s̃(Z, t) = Z for all Z ∈ A ∪ Λ and t ∈ C. For each Z ∈ U0\A
we can find finitely many sprays of this kind (corresponding to n linearly
independent directions in Cn) which together dominate at Z and hence at
every point in a Zariski open set containing Z. Repeating the construction
at other points (and for different choices of the hyperplane Λ) we obtain a
finite dominating family of algebraic sprays on CIPn\A.

The same proof applies to complex Grassmanians Y = Gk,n since these
can be covered by finitely many Zariski open neighborhoodsUj 	 Ck(n−k).

♠

Proof of Proposition 1.3. (Compare with Localization Lemma 3.5.B. in
[G].) The proof is essentially the same as the proof of Proposition 1.2 (a).
We shall repeatedly use the fact that for every closed algebraic subvariety
A ⊂ Y and every point y ∈ Y \A there exists an algebraic hypersurface
Λ ⊂ Y such that A ⊂ Λ but y /∈ Λ.

Fix a point y0 ∈ Y and let U ⊂ Y be a Zariski open neighborhood of
y0 with finitely many algebraic sprays sj :Ej → Y (j = 1, . . . , k) which
together dominate at y0. Replacing U by a smaller Zariski open neighbor-
hood of y0 we may assume thatΛ = Y \U is an algebraic hypersurface in Y
and the bundle Ej |U → U is algebraically trivial for each j. Composing an
algebraic trivialization of Ej |U with the spray sj we may therefore assume
that sj is defined on the product bundle U × CNj and has values in Y . To
remove the singularities of sj along Λ we replace the product bundle by
Nj [Λ]−mj for a sufficiently large mj ∈ IN. This gives finitely many sprays
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on Y which together dominate at y0 and hence over a Zariski open neigh-
borhood of y0. Finitely many such collections then dominate on Y . ♠

Remark. The idea of using the bundlesE = NL⊗m whereL = [Λ]−1 can be
found in Sects. 3.5.B. and 3.5.C. of [G]. However, our conclusion is different
from the one in [G] where the author claimed the existence of a dominating
spray on Y obtained by composing the individual non-dominating sprays
(see the Appendix below). The bundles L and E = NL⊗m used above
are strictly negative and do not admit any nontrivial holomorphic sections.
Hence there exist no nontrivial vector bundle maps from any trivial bundle
to E (since such a map would take a certain constant section to a nontrivial
holomorphic section of E). Thus we are unable to replace the collection of
sprays obtained above by a single dominating spray using Lemma 2.2. ♠

Proposition 1.5 follows at once from the following more general result.

5.1 Lemma. LetA be a closed algebraic subvariety of codimension at least
two in a (quasi-) projective algebraic manifold Y . Suppose that each point
y0 ∈ Y \A has a Zariski open neighborhoodU ⊂ Y and an algebraic spray
s:E → Y , defined on a vector bundle p:E → U , such that s is dominating
at y0 and s−1(A) ⊂ E contains no hypersurfaces. Then Y \A is subelliptic.

Indeed, if s:E → Y is a submersive algebraic spray then the codimen-
sion of s−1(A) in E is the same as the codimension of A in Y , and hence
Proposition 1.5 follows.

Proof of Lemma 5.1. After removing an algebraic hypersurface which does
not contain y0 we may assume that E|U = U × CN and that each fiber
Ãy = {t ∈ CN : s(y, t) ∈ A} of Ã := s−1(A) has codimension at least two
in CN . Note that 0 /∈ Ãy for y ∈ U\A.

Let t = (t1, . . . , tN ) ∈ CN . For each k = 0, 1, . . . , N we set C(k) =
Ck × {0}N−k. Let πk:U × C(k) → U × C(k−1) denote the projection
πk(y, t1, . . . , tk) = (y, t1, . . . , tk−1). After a linear change of coordinates
on CN and removing another algebraic hypersurface fromU we may assume
that

(i) for each k = 1, . . . , N the setA(k) = (U ×C(k))∩ Ã is a subvariety of
U×C(k) with fibers of codimension at least two (in particularA(1) = ∅),
and

(ii) πk(A(k)) ⊂ U × C(k−1) is an algebraic subvariety of U × C(k−1)
which does not contain the point (y, 0, . . . , 0) for any y ∈ U . (Note that
πk(A(k)) contains A(k−1) but it may be larger.)

Condition (ii) insures that for each k = 2, . . . , N there exists an alge-
braic function pk on U × C(k−1) which vanishes on πk(A(k)) and satisfies
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pk(y0, 0, . . . , 0) �= 0. Consider the map g:U × CN → U × CN ,

g(y, t) = (y, t1, p2(y, t1)t2, . . . , pN (y, t1, . . . , tN−1)tN ).

Clearly g(y, 0) = (y, 0), the map t → g(y0, t) is nondegenerate at t = 0,
and the image of g avoids Ã. Thus σ = s ◦ g:U × CN → Y is an algebraic
spray which is dominating at y0 and satisfies σ((U\A) × CN ) ⊂ Y \A.
Since y0 ∈ Y \A was arbitrary, the subellipticity of Y \A follows from
Proposition 1.3. ♠

Proof of Proposition 1.6. Let s:E → Y be a dominating spray on Y defined
on a vector bundle p:E → Y . Denote by Ẽ = π∗(E) → Ỹ the pull-back
of E by the map π: Ỹ → Y . Explicitly we have

Ẽ = {(ỹ, e): ỹ ∈ Ỹ , e ∈ E, π(ỹ) = p(e)}.
Letσ: Ẽ → Y be defined byσ(ỹ, e) = s(y, e)wherey = π(ỹ) ∈ Y . Fix ỹ ∈
Ỹ . Since the fiber Ẽỹ is simply connected and π is a holomorphic covering,
the map σ(ỹ, · ): Ẽỹ → Y has a unique holomorphic lifting s̃(ỹ, · ): Ẽỹ →
Ỹ (i.e., π(s̃(ỹ, e)) = σ(ỹ, e)) with s̃(ỹ, 0) = ỹ. Clearly s̃: Ẽ → Ỹ is a
dominating spray on Ỹ and hence Ỹ is elliptic. A similar argument works
for families of sprays, thereby showing that subellipticity of Y implies that
of Ỹ .

6 Removing intersections with complex subvarieties

LetX andY be complex manifolds andA ⊂ Y a closed complex subvariety.
Given a map f :X → Y we write f−1(A) = {x ∈ X: f(x) ∈ A} and
call it the intersection set of f with A. If A is a hypersurface or, more
generally, an effective divisor in Y , there is a well defined pull-back divisor
f∗(A) =

∑
mjVj in X , where each Vj is an irreducible component of

the hypersurface f−1(A) and mj ∈ IN is its multiplicity. The following
questions have been studied by many authors:
To what extent can the preimage f−1(A) resp. f∗(A) be prescribed ? How
large is the set of all holomorphic maps f :X → Y with the given preimage
f−1(A) (resp. f∗(A))?

In the simplest case when X = C and A consists of d points in the
Riemann sphere Y = CIP1 the answer changes when passing from d = 2
to d = 3: One can prescribe the pull-back of any two points in CIP1 by a
holomorphic map f : C → CIP1 (and there are infinitely many such maps),
but when d ≥ 3 the pull-back divisor f∗A completely determines the map
f . Similar situation occurs when A consists of d hyperplanes in general
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position in Y = CIPn: we have flexibility up to d = n + 1 (Corollary 6.2
(b)) and rigidity for d ≥ n+ 2 (due to hyperbolicity of CIPn\A).

The following result shows that subellipticity of the complement Y \A
implies the validity of the Oka principle for maps f :X → Y with the given
preimage f−1(A) (or pull-back f∗A when A is a divisor).

6.1 Theorem. LetA be a closed complex subvariety of a complex manifold
Y such that Y \A is subelliptic (Definition 2). IfX is a Stein manifold,K is a
compact holomorphically convex subset ofX and f :X → Y is a continuous
map which is holomorphic in an open set containing f−1(A)∪K then for any
r ∈ IN there exist an open setU ⊃ f−1(A)∪K and a homotopy ft:X → Y
(t ∈ [0, 1]) of continuous maps such that f0 = f , ft is holomorphic in U
and tangent to f to order r along f−1

t (A) = f−1(A) for each t ∈ [0, 1],
and f1 is holomorphic on X .

6.2 Corollary. The conclusion of Theorem 6.1 holds in the following cases:

(a) Y is an affine space Cn, a projective space CIPn or a complex Grass-
manian and A ⊂ Y is an algebraic subvariety of codimension at least
two.

(b) Y = CIPn and A consists of at most n + 1 complex hyperplanes in
general position.

(c) A complex Lie group acts transitively on Y \A.

In any of these cases Y \A is subelliptic by the results in Sect. 1. (Note
that (b) is a special case of (c).) Using Theorem 6.1 we shall also prove the
following Oka principle for removing of intersections.

6.3 Theorem. Assume that f :X → Y is a holomorphic map, A is a
complex subvariety of Y and f−1(A) = X0 ∪ X1, where X0 and X1 are
unions of connected components of f−1(A) andX0 ∩X1 = ∅. Assume that
X is Stein and the manifolds Y and Y \A are subelliptic. If there exists a
homotopy f̃t:X → Y (t ∈ [0, 1]) of continous maps satisfying f̃0 = f ,
f̃−1
1 (A) = X0, and f̃t|U = ft|U for some open set U ⊃ X0 and for all
t ∈ [0, 1], then for each r ∈ IN there exists a homotopy of holomorphic
maps ft:X → Y such that f = f0, f−1

1 (A) = X0, and for each t ∈ [0, 1]
the map ft agrees to order r with f alongX0 (which is a union of connected
components of f−1

t (A)).

When A = {0} ⊂ Y = Cd, Theorem 6.3 coincides with the main
result of [FR] on holomorphic complete intersections. When Y = Cd and
Y \A is elliptic this is Theorem 1.3 in [F1]. Theorem 6.3 applies if Y is any
of the manifolds Cn, CIPn or a complex Grassmanian (these are complex
homogeneous and therefore elliptic) and A ⊂ Y is an algebraic subvariety
of codimension at least two (Y \A is then subelliptic by Proposition 1.2).
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Example. For each n ≥ 1 there exists a discrete set A ⊂ Cn for which
Theorem 6.3 fails. To see this, we choose a discrete set D ⊂ Cn which is
unavoidable in the sense that every entire mapF : Cn → Cn\D has rank< n
at each point (see [RR]). Choose a point p ∈ Cn\D and set A = D ∪ {p}.
Take X = Cn, f = Id: Cn → Cn, X0 = {p} and X1 = D. Then the
conditions of Theorem 6.3 are satisfied but the conclusion fails (since the
rank condition for holomorphic maps F : Cn → Cn\D implies that F−1(p)
contains no isolated points and hence X0 = {p} cannot be a connected
component of F−1(p) for any such F ). ♠

Theorem 6.1 is a special case of the following result.

6.4 Theorem. Let h:Z → X be a holomorphic submersion onto a Stein
manifold X . Suppose that Z0 ⊂ Z is a closed complex subvariety of Z,
f :X → Z is a continuous section andX0 = {x ∈ X: f(x) ∈ Z0}. Assume
that f is holomorphic in an open neighborhood of X0 ∪ K where K is a
compact holomorphically convex subset of X . If the restricted submersion
h:Z\Z0 → X is subelliptic over X\X0 then for each r ∈ IN there is a
homotopy ft:X → Z of continuous sections of h such that f0 = f , f1 is
holomorphic on X , and for each t ∈ [0, 1] the section ft is holomorphic in
a neighborhood of X0 ∪K, tangent to f to order r along X0 and satisfies
{x ∈ X: ft(x) ∈ Z0} = X0. The analogous result holds for families of
sections.

Indeed we obtain Theorem 6.1 by taking h:Z = X × Y → X to be the
projection h(x, y) = x and Z0 = X ×A. Then h:Z\Z0 = X × (Y \A) →
X is a subelliptic submersion when the fiber Y \A is subelliptic.

Proof of Theorem 6.4. We shall follow the proof of Theorem 1.4 in [FP3]
with some modifications which we shall explain. (The proof is essentially the
same as the proof of Theorem 1.1 in Sect. 4 above, except for the additional
interpolation condition on the subvariety X0.) We inductively construct a
sequence of deformations of the given section which are holomorphic on
increasingly large open sets in X containing X0 (and exhausting X) while
at the same time paying attention not to introduce any additional intersec-
tion points of the section with the subvariety Z0 (other than X0 where the
section is kept fixed through the entire process). To insure that no additional
intersections withZ0 appear in small neighborhoods ofX0 we keep the sec-
tions tangent to f to a very high order along X0 (this will be measured by
a suitable coherent sheaf of ideals on X). Away from X0 we shall perform
the modification procedure using the restricted submersion h:Z\Z0 → X ,
thereby insuring that the sections remain in Z\Z0 over X\X0.

Definition 4. Let S ⊂ OX be a coherent analytic sheaf of ideals onX and
X0 = {x ∈ X: Sx �= OX,x}. We say that local holomorphic sections f0 and
f1 of h:Z → X at a point x ∈ X0 are S-tangent at x (denoted δx(f0, f1) ∈
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Sx) if there exists a local holomorphic chart φ on Z at z = f0(x) such that
the germ at x of every component of the map φf0 − φf1 belongs to Sx. If
f0 and f1 are holomorphic in an open set U ⊃ X0 and S-tangent at each
x ∈ X0, we say that f0 and f1 are S-tangent and write δ(f0, f1) ∈ S.

S-tangency is clearly independent of the choice of local charts on Z.
We now define a sheaf of ideals R ⊂ OX which measures the order

of contact of a section f :X → Z with a subvariety Z0 ⊂ Z along X0 =
{x ∈ X: f(x) ∈ Z0}. Assume that f is holomorphic in a neighborhood of
X0. Fix x ∈ X0 and let z = f(x) ∈ Z0. Let g1, . . . , gk be holomorphic
functions in a neighborhood V ⊂ Z of z which generate the sheaf of ideals
of Z0 ∩ V at each point of V . Let RV denote the sheaf of ideals in OX |V
generated by the functions gj ◦ f , 1 ≤ j ≤ k. (For x ∈ V \X0 we have
Rx = Ox.) It is easily seen that RV does not depend on the choice of the
local generators gj and hence we obtain a coherent analytic sheaf of ideals
R ⊂ OX with support X0.

Fix an integer r ∈ IN and let S = R· J r, where J ⊂ OX is the sheaf
of ideals of X0. Let d be a metric on Z. The following lemma was proved
in [Fo1, Sect. 3].

6.5 Lemma. Let f :X → Z be a continuous section of h:Z → X which
is holomorphic in an open set U containing X0 = {x ∈ X: f(x) ∈ Z0}. If
g:U → Z is a holomorphic section of h:Z|U → U satisfying δ(f, g) ∈ S
then there is an open set V ⊃ X0 such that {x ∈ V : g(x) ∈ Z0} = X0.
Furthermore ifK ⊂⊂ K ′ are compact sets in U then there is an ε > 0 such
that for any g as above satisfying d(f(x), g(x)) < ε (x ∈ K ′) we have
{x ∈ K: g(x) ∈ Z0} = X0 ∩K.

Everything is now ready for us to explain the modification problem which
is the main ingredient in the proof of Theorem 6.4.

The modification problem. (Assumptions as in Theorem 6.4.) Let B ⊂
X\X0 be a compact set such that (K,B) is a Cartan pair inX (Sect. 4) and
K∪B is holomorphically convex inX . LetA = X0 ∪K and let a: Ã → Z,
b: B̃ → Z\Z0 be holomorphic sections of h in open neighborhoods Ã ⊃ A

resp. B̃ ⊃ B such that {x ∈ Ã: a(x) ∈ Z0} = X0. Suppose furthermore
that bt: C̃ → Z\Z0 (t ∈ [0, 1]) is a family of holomorphic sections over
C̃ = Ã∩ B̃ ⊂ X\X0 such that b0 = b|

C̃
and b1 = a|

C̃
. From these data we

must construct a homotopy (ãt, b̃t) (t ∈ [0, 1]) of holomorphic sections in
smaller open neighborhoods A′ ⊃ A resp. B′ ⊃ B satisfying the following
properties:

(i) ã0 = a|A′ , b̃0 = b|B′ ,
(ii) ã1 = b̃1 on A′ ∩B′, and hence this pair defines a holomorphic section

ã on A′ ∪B′,
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(iii) for each t ∈ [0, 1] we have δ(ãt, a) ∈ S, {x ∈ A′: ãt(x) ∈ Z0} = X0,
and ãt|K is uniformly close to a|K , and

(iv) b̃t(x) ∈ Z\Z0 for all x ∈ B′ and t ∈ [0, 1].

The final section ã is holomorphic on A′ ∪ B′ ⊃ X0 ∪ K ∪ B, it is
S-tangent to a along X0 and its graph intersects Z0 precisely over X0 as
required. This will complete the induction step. To prove the parametric
version of Theorems 6.4 and 6.1 one must also consider the analogous
modification problem for continuous families of sections {(ap, bp): p ∈ P}
on a neighborhood of A resp. B, where P is a compact Hausdorff space.
This extension presents no additional difficulties and we refer to [FP1] for
the details.

To solve the above modification problem we proceed as in Sect. 4 above.
By Theorem 3.1 (the Oka-Weil theorem) we can deform b through a homo-
topy of holomorphic sections of Z\Z0 over a neighborhood ofB to another
section (still denoted b) which approximates a uniformly on a neighborhood
ofC = A∩B. The remaining problem is to patch a and b. This will be done
as in Sect. 4, but with a couple of modifications which we now explain. As
in Sect. 4 we find open neighborhoods A′ ⊃ A, B′ ⊃ B of A resp. B and

(a) a local h-spray s1:A′ × IBn(η) → Z with s1(x, 0) = a(x) for x ∈ A′,
(b) a global h-spray s2:B′×Cn → Z\Z0 with s2(x, 0) = b(x) for x ∈ B′,

and
(c) a transition map ψ:C ′ × IBn(η) → Cn satisfying

s2(x, ψ(x, t)) = s1(x, t), (x ∈ C ′ = A′ ∩B′, t ∈ IBn(η)).

The only addition is that we build S-tangency into the construction of the
local spray s1 as follows. First we choose a preliminary local dominating h-
spray s′

1:A
′ × IBk(η′) → Z with s′

1(x, 0) = a(x). By Cartan’s Theorem A
[GR] there exist finitely many global sectionsh1, . . . , hm of the sheafS onX
such that X0 = {x ∈ X:hj(x) = 0, 1 ≤ j ≤ m}. (The hj’s need not gen-
erate S.) Define τ :A′×(Ck)m → Ck by τ(x, t1, . . . , tm) =

∑m
j=1 hj(x)tj ,

where tj ∈ Ck for each j. Set n = mk and t = (t1, . . . , tm) ∈ Cn. Then
for suitably small η > 0 and A′ ⊃ A the map

s1(x, t) = s′
1(x, τ(x, t)), (x ∈ A′, t ∈ IBn(η))

is a local h-spray which is dominating on A′\X0, and any section of the
form aα(x) = s1(x, α(x)) (where α:A′ → IBn(η) is a holomorphic map)
is S-tangent to a along X0. If η > 0 and A′ ⊃ A are chosen suficiently
small then Lemma 6.5 insures that the graph of aα intersects Z0 precisely
over X0.

After shrinking the sets A′ ⊃ A and B′ ⊃ B we obtain by Proposition
4.1 in [FP3] a pair of holomorphic maps α:A′ → IBn(η), β:B′ → Cn
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such that ψ(x, α(x)) = β(x) for x ∈ C ′ = A′ ∩ B′. The holomorphic
homotopies

ãt(x) = s1(x, tα(x)) (x ∈ A′), b̃t(x) = s2(x, tβ(x)) (x ∈ B′)

for t ∈ [0, 1] then solve the modification problem. In fact for t = 1 and
x ∈ C ′ we have

b̃1(x) = s2(x, β(x)) = s2(x, ψ(x, α(x))) = s1(x, α(x)) = ã1(x),

and the other requirements are easily verified.
Using the solution of this modification problem we prove Theorem 6.4

by following the globalization scheme in the proof of Theorem 1.4 in [FP3].
More precisely, we follow the second approach in [FP3, pp. 65-66] whose
main advantage is that the patching of (families of) sections is performed
only on sets C = A ∩ B ⊂ X\X0 and hence no special condition on the
submersion h is required over X0. (In [F2] it is shown that we may even
allow h to have ramification points, provided that these project by h into the
subvarietyX0.) With the same tools one can obtain the extension of Theorem
6.4 to continuous families of sections {fp: p ∈ P} with the parameter in a
compact Hausdorff space P (see [FP2, FP3]). ♠

Proof of Theorem 6.3. We replace maps X → Y by sections of Z =
X × Y → X without changing the notation. By hypothesis there is a
continuous homotopy f̃t:X → Z (t ∈ [0, 1]), with f̃0 = f , which is
fixed near X0 and satisfies {x ∈ X: f̃1(x) ∈ Z0} = X0. We now apply
Theorem 6.4, with f̃1 as the initial section, to obtain a homotopy f̃t:X → Z

(t ∈ [1, 2]), where the final section f̃2 is holomorphic on X and satisfies
{x ∈ X: f̃2(x) ∈ Z0} = X0. We rescale the parameter interval [0, 2]
back to [0, 1]. Since Z → X is assumed to be subelliptic over X\X0, we
can apply Theorem 6.4 to the homotopy {f̃t: t ∈ [0, 1]}, with the sheaf S
defined above (for some fixed r ∈ IN), to obtain a two-parameter homotopy
ht,s:X → Z (t, s ∈ [0, 1]) of continuous sections which are holomorphic
in a neighborhood V ⊃ X0 (independent of t, s) and satisfy:

(i) ht,0 = f̃t for all t ∈ [0, 1],
(ii) h0,s = f̃0 = f0 and h1,s = f̃1 for all s ∈ [0, 1],
(iii) δ(ht,0, ht,s) ∈ S for all s, t ∈ [0, 1], and
(iv) the map ft := ht,1 is holomorphic on X for each t ∈ [0, 1].

It follows from (iii) and Lemma 6.5 that there is a neighborhood U ⊂ V
of X0 such that {x ∈ U :ht,s(x) ∈ Z0} = X0 for all s, t ∈ [0, 1]. The
homotopy {ft: t ∈ [0, 1]} defined by (iv) above then satisfies the conclusion
of Theorem 6.3. ♠
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Appendix: Remarks on the paper [G]

We wish to point out certain inconsistencies in Sect. 3 of the paper [G], in
particular those concerning the notion Ell∞.
1. In the holomorphic category the property Ell∞ for a complex manifold
Y means the validity of a certain strong form of the Oka principle for maps
from all Stein manifolds to Y (Sect. 3.1. in [G]). However, in [G, Sect.
3.5] an algebraic manifold Y is said to be algebraically Ell∞ if it admits
a dominating algebraic spray s:E → Y , defined on an algebraic vector
bundleE → Y . The conclusion of Localization Lemma 3.5.B. in [G] is that
a manifold Y satisfying the hypothesis of that lemma is algebraically Ell∞.
However, the proof offered there only gives finitely many algebraic sprays
si:Ei → Y which together dominate at each point y ∈ Y (thus showing
that Y is subelliptic in our sense) and concludes with the sentence: Then
a composition of finitely many such si...gives us the desired dominating
spray over Y . Since the bundles Ei are not necessarily trivial (in the proof
of Proposition 1.2 they are in fact negative and do not admit any nontrivial
holomorphic sections), the sprays si cannot be pulled back to nondegenerate
sprays on trivial bundles over Y which would be necessary in order to use
Lemma 2.4.
2. A similar remark applies to Sect. 3.5.C. in [G] which claims the implica-
tion (4.5) for any Zariski closed subset A of codimension at least two in an
algebraic manifold Y . Being unable to prove this we offer Proposition 1.5
(and Lemma 5.1) above as a replacement.
3. Another inconsistency can be found in [G, Sect. 3.2.A’]. The question
considered in [G, Sect. 3.2] is whether the Ell∞ property of a complex
manifold Y implies the existence of a dominating spray on Y . In [G, sec.
3.2.A’] it is claimed that this is the case if Y is a projective variety which
admits a ‘sufficiently negative’ vector bundleE → Y whose rankN is large
compared to dimY . The idea in [G] is to first construct a ‘local spray’ s0 on
Y , defined in a small tubular neighborhood of the zero section Y0 ⊂ E in
E, and subsequently Runge approximate s0 by a global holomorphic map
s:E → Y (which is then a dominating spray on Y ). Here the author refers
to the assumed axiom Ell∞ which pertains to maps from Stein manifolds
to Y . The problem is that the manifold E is not Stein (it contains the com-
pact complex submanifold Y0). When the bundle E → Y is negative, E is
holomorphically convex and admits an exhaustion function which is zero
on Y0 and strongly plurisubharmonic on E\Y0. In order to make the above
conclusion valid one would have to change the axiom Ell∞ so that it would
pertain to maps from proper modifications of Stein spaces to the given man-
ifold Y . Although it seems likely that subellipticity of Y implies a suitable
version of the Oka principle for maps X → Y from such manifolds X , no
such result has been proved yet.
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4. Section 3 in [G] contains several further results which we have not been
able to understand. For instance, in Sect. 3.5.C. of [G] one finds the following
statement: If a Zariski closed subset Y0 ⊂ Y in an algebraic manifold Y
satisfies codimY0 ≥ 2 then (Ell∞ for Y ) ⇒ (Ell∞ for Y ′ = Y \Y0). Here
Ell∞ property for Y means the existence of a dominating algebraic spray
on Y according to the first sentence in [G, 3.5.A]. We are unable to justify
the argument which is supposed to bring a spray on Y in ‘general position’
with respect to the subvariety Y0 (see the discussion in Sect. 3.5.C’ in [G],
and compare with our Proposition 1.5 and Lemma 5.1.).

A remark on [FP3]. We take this occasion to point out the following omis-
sion in the hypothesis of Theorem 5.2 in [FP3]: The sets A and B in the
statement of that theorem must have a basis of open Stein neighborhoods in
X . This hypothesis, which was assumed in the closely related Theorem 5.1
in [FP3] but was omitted in Theorem 5.2, is satisfied in all applications of
Theorem 5.2 in [FP3].
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