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ABSTRACT. We describe Gromov’s seminal contribution [9] to the de-
velopment of modern Oka principle, a form of homotopy principle in
complex analysis which includes the classical Oka-Grauert principle. Re-
cently this led to the introduction of a new class of complex manifolds
and holomorphic maps, the Oka manifolds and Oka maps. For more
information on this subject see the monograph [6] and the survey [7].

1. THE OKA-GRAUERT PRINCIPLE

The homotopy principle in complex analysis is commonly known as the
Oka Principle after Kiyoshi Oka (1901-78). In his series of papers during
1936-1953, Oka invented new methods of constructing global analytic ob-
jects from local ones. The Oka principle first appeared in his 1939 paper [12]
where he showed that a holomorphic line bundle on a domain of holomorphy
is holomorphically trivial if (and only if) it is topologically trivial.

Domains of holomorphy form a sublass of the class of Stein manifolds
that were introduced by Karl Stein in 1951. During 1950s, Hans Grauert
and Reinhold Remmert studied Stein spaces, complex spaces that are holo-
morphically convex and on which holomorphic functions separate points. In
1958, Grauert [8] extended Oka’s theorem to principal fiber bundles with
arbitrary complex Lie group fibers over Stein spaces, showing that the holo-
morphic classification of such bundles coincides with their topological classi-
fication. More precisely, if X is a Stein space and G is a complex Lie group,
then the inclusion O)G( — C)Cg of the sheaf of germs of holomorphic maps
X — (@ into the sheaf of germs of continuous maps induces an isomorphism
HY(X;0%) = HY(X;0%) of the 1st Cech cohomology groups. Oka’s theo-
rem corresponds to the case when G = C* = C\ {0}, and it says that the
Picard group Pic(X) = H'(X;O*) is isomorphic to the topological Picard
group, and hence (via the first Chern class map) to H?(X;Z).

Grauert’s result also pertains to fiber bundles with complex homogeneous
fibers; in particular, to complex vector bundles. Interesting generalizations
and applications were found by Forster and Ramspott, Henkin and Leiterer,
and others (see Chapter 7 in [6]). This led to the formulation of the following
heuristic principle:

Oka Principle: Analytic problems on Stein spaces which can be cohomo-

logically formulated have only topological obstructions.
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Oka’s original theorem is proved by looking at the exact cohomology
sequence associated to the short exact sequence 0 — Z — O 5 O* — 1,
where o(f) = exp(2mif). This cohomological proof fails for nonabelian Lie
groups, and in particular for GL,(C) when n > 1. Grauert reduced the
proof to the problem of constructing holomorphic sections of an associated
holomorphic fiber bundle £ — X with fiber G whose transition maps are
left and right multiplications by elements of G. The method is similar to the
construction of global sections of coherent analytic sheaves over Stein spaces
(Cartan’s Theorem A). The key step consists in gluing a pair of holomorphic
sections over a suitable geometric configuration (A, B) in X, called a Cartan
pair. This is accomplished by the Cartan lemma on splitting a holomorphic
map f: AN B — G to a complex Lie group G into a product f = fafp of
two holomorphic maps fa: A = G, fg: B — G, each one defined on one of
the larger sets A, B in our configuration.

The classical Oka-Grauert principle is limited to fiber bundles with com-
plex homogeneous fibers. Challenging new problems in Stein geometry called
for a more general Oka principle. One such case was Forster’s result from
1970 [2] on the existence of proper holomorphic embeddings of a Stein mani-
fold X™ into CV for values of N well below the classical result N = 2n+1 of
Remmert, Bishop and Narasimhan. Forster conjectured that for n > 1 one
can take N = [37”} + 1, the smallest number for which there are no topo-
logical obstructions. Forster’s conjecture was only confirmed two decades
later by Eliashberg and Gromov [1], using Gromov’s pioneering work on
Oka principle presented in the next section.

2. GROMOV’S OKA PRINCIPLE

The modern development of the Oka principle started with Gromov’s
seminal paper of 1989 [9] in which the emphasis moved from the cohomolog-
ical to the homotopy-theoretic aspect. Grauert’s proof uses the exponential
map on a complex Lie group for two purposes: to prove a Runge-type ap-
proximation theorem for holomorphic maps to a complex Lie group, and to
linearize the gluing problem for holomorphic sections. Gromov introduced a
much more flexible concept of a dominating (holomorphic) spray on a com-
plex manifold Y: A triple (E, 7, s) consisting of a holomorphic vector bundle
m: F — Y and a holomorphic map s: ¥ — Y such that for each point y € Y
we have s(0,) = y and the differential dso,: Tp, £/ — T,Y maps the vertical
subspace Fj of the tangent space Ty, ' surjectively onto the tangent space
T,Y. A complex manifold is said to be elliptic if it admits a dominating
spray. Gromov’s first main result is the following:

Theorem 2.1. (M. Gromov, [9]) Maps X — Y from a Stein manifold X
to an elliptic manifold Y satisfy all forms of the Oka principle. The same
holds for sections f: X — E of any holomorphic fiber bundle m: E — X
with a Stein base X and an elliptic fiber Y.
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This means that every continuous map (resp. section) is homotopic to a
holomorphic one, with uniform approximation on compact holomorphically
convex subsets of X and with interpolation on closed complex subvarieties of
X. The analogous result holds with continuous dependence on parameters.
In particular, the inclusion O(X,Y) — C(X,Y") of the space of holomorphic
maps into the space of continuous sections is a weak homotopy equivalence.

Here are a few examples that were pointed out by Gromov:

(A) If a complex Lie group G acts transitively on Y by holomorphic
automorphisms, we obtain a spray s: E =Y x g — Y by taking s(y,v) =
exp(v)y. Here, g = T1G = C* (k = dim G) is the Lie algebra of G.

(B) Let Vi,..., Vi be complete holomorphic vector fields on a complex
manifold Y'; that is, the flow (;5{ (y) of V; exists for all complex values of time
t, starting at any point y € Y. If the vectors V;(y) span the tangent space
T,Y at each point y € Y, then we get a dominating spray s: Y x Ct—>Y
by the formula s(y,t1,...,t;) = ¢}, 0 @7, 00 gbfk (y).

(C) A dominating spray of type (B) exists on C" \ A, where A is an
algebraic subvariety of C which does not contain any hypersurfaces.

Dominating sprays are used by Gromov in essentially the same way as
sprays of type (A) in Grauert’s construction; however, the details are con-
siderably more involved. Theorem 2.1 also holds for the ostensibly larger
class of subelliptic manifolds: A complex manifold Y with a finite family
of holomorphic sprays (Fj,mj,s;) which together dominate at every point
y € Y, meaning that 7,Y" is spanned by the vector subspaces (ds;)o, (£}, )-
For example, if A C CP" is a projective subvariety of codimension > 1, then
CP"™ \ A is subelliptic, but is not known to be elliptic.

Gromov considered the Oka principle in the more general context of sec-
tions of holomorphic submersions over Stein manifolds. A surjective holo-
morphic submersion 7: Z — X is said to be elliptic if each point x¢y € X
admits an open neighborhood U C X and a family of dominating sprays s,
on the fibers Z,, depending holomorphically on the base point x € U. Sim-
ilarly one defines a subelliptic submersion. We introduce a stratified (sub-)
elliptic submersion by asking that the base X, which may now be a complex
space with singularities, is stratified by a descending chain of closed com-
plex subvarieties X = Xg D X7 D -+ D X,,, = (), with smooth differences
S; = X \ Xjt1, such that the restriction of 7 to any stratum (a connected
component of a difference S;) is a (sub-) elliptic submersion. Gromov’s main
theorem [9, Main Theorem 4.5] is included in the following result from [5].

Theorem 2.2. If X is a Stein space and w: Z — X is a stratified (sub-)
elliptic submersion, then section X — Z of m satisfy the Oka principle.

Example 2.3. Let 7: £ — X be a holomorphic vector bundle of rank
n > 1, and let ¥ C E be a complex subvariety with affine algebraic fibers
;. =¥X¥NE, C E, 2C" (x € X) of codimension > 1. If ¥ is locally
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uniformly tame (a condition concerning its behavior at infinity), then the
restricted submersion 7: E'\ ¥ — X is elliptic. If X is Stein, it follows that
the Oka principle holds for sections X — E'\ 3.

The Oka principle in the above example is used to construct proper holo-
morphic immersions and embeddings of Stein manifolds of dimension > 1
into Euclidean spaces of minimal dimension; see [1] and Chapter 8 in [6].
The problem of embedding open Riemann surfaces properly holomorphically
into C? is still very much open since the Oka principle does not apply in this
case (see Sect. 8.9 in [6] for results in this direction).

An interesting recent application of Theorem 2.2 was found by Ivarsson
and Kutzschebauch [10] who solved the following Gromov-Vaserstein prob-
lem: Every null-homotopic holomorphic map X — SL,(C) from a finite
dimensional Stein space X to a special linear group can be factored into a
finite product of upper- and lower triangular holomorphic maps into SL,,(C).

A detailed exposition of Theorems 2.1 and 2.2 can be found in [3, 4, 5],
and also in Chapters 5 and 6 of [6].

3. FROM ELLIPTIC MANIFOLDS TO OKA MANIFOLDS AND OKA MAPS

Gromov asked in [9] whether the Oka principle for maps X — Y from
Stein manifolds X to a given complex manifold Y could be characterized
by a Runge approximation property for entire maps C* — Y from Eu-
clidean spaces to Y. This conjecture was confirmed in 2006 by Forstneric¢
who showed that it suffices to ask for Runge approximation on a special
class of compact (geometrically!) convex sets in Euclidean spaces. This
condition, called CAP (the Convex Approximation Property), is equivalent
to some dozen ostensibly different Oka properties; a complex manifold sat-
isfying these equivalent properties is called an Oka manifold. (See [7] and
Chapter 5 in [6] for more information.) The simple characterization of Oka
manifolds by CAP paved the way to prove some functorial properties which
are unknown in the class of elliptic manifolds. For example, if £ and B are
complex manifolds and £ — B is a holomorphic fibre bundle whose fiber is
an Oka manifold, then B is Oka if and only if F is Oka.

By Gromov’s Theorem 2.1, every elliptic manifold is an Oka manifold. A
partial converse, due to F. Larusson, pertains to ‘good’ complex manifolds;
this class includes all Stein manifolds and all quasi-projective manifolds. A
good manifold Y is Oka if and only if there exists an affine holomorphic
bundle £ — Y whose total space E is Oka and Stein, hence elliptic.

Any natural property of objects in a given category should induce a corre-
sponding property of morphisms. Following this philosophy, a holomorphic
map w: F — B is said to be an Oka map if it is a Serre fibration and it
enjoys the parametric Oka property. The latter is a parametric version of
the basic Oka property of m which pertains to the possibility of deforming
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any continuous w-lifting Fy: X — E of a given holomorphic map f: X — B
from a Stein space X into a holomorphic lifting F}: X — FE of f.

Finnur Larusson explained how Oka manifolds and Oka maps naturally
fit into an abstract homotopy-theoretic framework. The category of complex
manifolds and holomorphic maps can be embedded into a model category
such that: (a) a holomorphic map is acyclic (as a map in the ambient model
category) if and only if it is a homotopy equivalence in the usual topological
sense; (b) a holomorphic map is a fibration if and only if it is an Oka map.
In particular, a complex manifold is fibrant if and only if it is Oka; (c) a
complex manifold is cofibrant if and only if it is Stein; (d) a Stein inclusion
is a cofibration. (See [11] and Sect. 7 in [7] for more information.)

A central problem is to determine the place of Oka manifolds in the clas-
sification of complex manifolds. This is well understood only in dimension
one: a Riemann surface is Oka if and only if it is not Kobayashi hyperbolic.
In particular, the compact Riemann surfaces that are Oka are the Riemann
sphere and all elliptic curves. Already for complex surfaces the problem
is difficult and to a large extent open. Whether the Oka property is pre-
served by modifications such as blowing up and blowing down is a closely
related problem. In particular, we do not know whether an Oka manifold of
dimension > 1 blown up at a point, or punctured at one point, is still Oka.
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