A theorem on Wiener-type invariants for isometric subgraphs of hypercubes

Sandi Klavžar
Department of Mathematics and Computer Science
PeF, University of Maribor
Koroška cesta 160, 2000 Maribor, Slovenia
and
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana
sandiklavzar@uni-mb.si

Ivan Gutman
Faculty of Science, University of Kragujevac
P. O. Box 60, 34000 Kragujevac, Serbia & Montenegro
gutman@knez.uis.kg.ac.yu

Abstract
Let \(d(G, k) \) be the number of pairs of vertices of a graph \(G \) that are at distance \(k \), \(\lambda \) a real (or complex) number, and \(W_\lambda(G) = \sum_{k \geq 1} d(G, k) k^\lambda \). It is proved that for a partial cube \(G \), \(W_{\lambda+1}(G) = |F| W_\lambda(G) - \sum_{F \subseteq \mathcal{F}} W_\lambda(G \setminus F) \), where \(\mathcal{F} \) is the partition of \(E(G) \) induced by the Džoković-Winkler relation \(\Theta \). This result extends previously known result for trees and implies several relations for distance-based topological indices.

Key words: graph distance, hypercube, partial cube, Wiener number, hyper-Wiener index.

AMS subject classification (2000): 05C12, 92E10

1 Introduction

The **Wiener number** (or **Wiener index**) \(W(G) \) of a connected graph \(G \) is the sum of distances between all pairs of vertices of \(G \), that is,

\[
W(G) = \sum_{\{u,v\} \subseteq V(G) \times V(G)} d(u, v).
\]
In the case of trees the Wiener number was introduced back in 1947 by Wiener in [25], hence the name of this graph invariant. Until today, it has been extensively investigated, above all in mathematical chemistry, see special issues of journal devoted to the topic [13, 14], recent surveys [5, 6], and recent papers [7, 8, 9].

The Wiener number can be extended to disconnected graphs as follows [12]. Denote by \(d(G, k) \) the number of pairs of vertices of \(G \) that are at distance \(k \). Note that \(d(G, 0) \) and \(d(G, 1) \) represent the number of vertices and edges, respectively. Then \(W \) can be extended to disconnected graphs as

\[
W(G) = \sum_{k \geq 1} d(G, k) k^\lambda,
\]

where \(\lambda \) is some real (or complex) number. Several particular instances of the invariant \(W_\lambda \) have been previously studied. For instance, \(W_{-2} \), \(W_{-1} \), \(\frac{1}{2} W_1 \), and \(\frac{1}{2} W_3 + \frac{1}{2} W_2 + \frac{1}{3} W_1 \) are the so-called Harary index, reciprocal Wiener index, hyper–Wiener index, and Tratch-Stankevich-Zefirov index, cf. [12] and references therein. In the chemical literature also \(W_{1/2} \) [27] as well as the general case \(W_\lambda \) were examined [10, 11, 15].

Let \(T \) be a tree, then in [12] the following recursive formula for \(W_\lambda \) has been obtained:

\[
W_{\lambda+1}(T) = (n - 1) W_\lambda(T) - \sum_{e \in E(T)} W_\lambda(T - e). \tag{1}
\]

In this note we prove that if \(G \) is a partial cube and \(\mathcal{F} \) the partition of \(E(G) \) induced by the Djoković-Winkler relation \(\Theta \), then

\[
W_{\lambda+1}(G) = |\mathcal{F}| W_\lambda(G) - \sum_{F \in \mathcal{F}} W_\lambda(G \setminus F). \tag{2}
\]

Since trees are partial cubes in which the partition \(\mathcal{F} \) is trivial, that is, every edge of a tree forms a class of the partition, (1) immediately follows from (2). In addition we will demonstrate that some known relations between distance-based topological indices follow from formula (2).

2 The main result

For \(u, v \in V(G) \), let \(d_G(u, v) \) denote the length of a shortest path (also called geodesic) in \(G \) from \(u \) to \(v \). A subgraph \(H \) of a graph \(G \) is called isometric if \(d_H(u, v) = d_G(u, v) \) for all \(u, v \in V(H) \). Isometric subgraphs of hypercubes are called partial cubes. Clearly, hypercubes are partial cubes, as well as are trees and median graphs. Partial cubes form a well studied class of graphs, we refer to classical references [1, 4, 26], book [16], recent paper [20] and references therein. For applications of partial cubes to mathematical chemistry see [3, 17, 18, 19, 21].
The Djoković-Winkler relation Θ is defined on the edge set of a graph in the following way [4, 26]. Edges \(e = xy \) and \(f = uv \) of a graph \(G \) are in relation Θ if

\[
d_G(x, u) + d_G(y, v) \neq d_G(x, v) + d_G(y, u).
\]

Winkler [26] proved that among bipartite graphs, Θ is transitive precisely for partial cubes, hence Θ partitions the edge set of a partial cube. Let \(G \) be a partial cube and \(\mathcal{F} = \{F_1, F_2, \ldots, F_r\} \) the partition of its edge set induced by the relation Θ. Then we say that \(\mathcal{F} \) is the Θ-partition of \(G \).

For the proof of our main theorem we need the following facts about Θ, cf. [16, 20].

Lemma 1 Let \(G \) be a partial cube.

(i) A path \(P \) in \(G \) is a geodesic if and only if no two different edges of \(P \) are in relation Θ.

(ii) Let \(F \) be a class of the Θ-partition of \(G \). Then \(G \setminus F \) consists of two connected components.

We are now ready for our main result.

Theorem 2 Let \(G \) be a partial cube and \(\mathcal{F} \) its Θ-partition. Then for any real (or complex) number \(\lambda \),

\[
W_{\lambda+1}(G) = |\mathcal{F}| W_\lambda(G) - \sum_{F \in \mathcal{F}} W_\lambda(G \setminus F).
\]

Proof. Let \(s \) be the diameter of \(G \), then

\[
W_\lambda(G) = \sum_{k=1}^{s} d(G, k) k^\lambda.
\]

Let \(\mathcal{F} = \{F_1, F_2, \ldots, F_r\} \) and set

\[
X = \sum_{i=1}^{r} W_\lambda(G \setminus F_i).
\]

Let \(u \) and \(v \) be arbitrary vertices of \(G \), where \(d(u, v) = k, 1 \leq k \leq s \). Let \(P \) be a \(u, v \)-geodesic. By Lemma 1 (i), the edges of \(P \) belong to pairwise different classes of \(\mathcal{F} \). We may assume without loss of generality that they belong to \(F_1, F_2, \ldots, F_k \). By Lemma 1 (ii), \(u \) and \(v \) belong to different connected components of \(G \setminus F_i \) for \(i = 1, \ldots, k \). On the other hand, \(u \) and \(v \) are in the same connected component of \(G \setminus F_i \) for \(i = k + 1, \ldots, r \). Clearly, in the latter case, \(d_{G \setminus F_i}(u, v) = k \). It follows that the pair \(\{u, v\} \) contributes \((r - k) \)-times to \(X \). Thus,

\[
X = \sum_{k=1}^{s} (r - k) d(G, k) k^\lambda
\]

\[
= r \sum_{k=1}^{s} d(G, k) k^\lambda - \sum_{k=1}^{s} d(G, k) k^{\lambda+1}
\]

\[
= r W_\lambda(G) - W_{\lambda+1}(G).
\]
If F is a Θ-class of the hypercube Q_n, then $Q_n \setminus F$ consists of two disjoint copies of Q_{n-1}. Thus, by Theorem 2, $W_{\lambda+1}(Q_n) = nW_\lambda(Q_n) - 2nW_\lambda(Q_{n-1})$. By this recurrence relation it follows that $W_\lambda(Q_n) = p_\lambda(n)4^n$, where $p_\lambda(n)$ is a polynomial. This can also be seen from the formula $W_\lambda(Q_n) = 2^{n-1} \sum_{k=1}^{n} \binom{n}{k} k^\lambda$.

3 Applications

In this section we give two applications of Theorem 2. The first one is the following result for the Wiener number, first given in [19], and extended to the so-called L_1-graphs in [2].

Let G be a partial cube, \mathcal{F} its Θ-partition, and $F \in \mathcal{F}$. Then we will denote the connected components of $G \setminus F$ by $G_1(F)$ and $G_2(F)$. Set $n_1(F) = |G_1(F)|$ and $n_2(F) = |G_2(F)|$.

Corollary 3 Let G be a partial cube and \mathcal{F} its Θ-partition. Then

$$W_1(G) = W(G) = \sum_{F \in \mathcal{F}} n_1(F) n_2(F).$$

Proof. Let $n = |V(G)|$, then for any $F \in \mathcal{F}$, $n_1(F) + n_2(F) = n$. Using Theorem 2 we can compute as follows.

$$W_1(G) = |\mathcal{F}|W_0(G) - \sum_{F \in \mathcal{F}} W_0(G \setminus F)$$

$$= |\mathcal{F}| \binom{n}{2} - \sum_{F \in \mathcal{F}} \left[\binom{n_1(F)}{2} + \binom{n_2(F)}{2} \right]$$

$$= |\mathcal{F}| \binom{n}{2} - \frac{1}{2} \sum_{F \in \mathcal{F}} \left[n^2 - n - 2n_1(F)n_2(F) \right]$$

$$= |\mathcal{F}| \binom{n}{2} - \frac{1}{2} \sum_{F \in \mathcal{F}} (n^2 - n) + \sum_{F \in \mathcal{F}} n_1(F)n_2(F)$$

$$= \sum_{F \in \mathcal{F}} n_1(F)n_2(F).$$

For the second application some more concepts are needed. The hyper-Wiener index WW is a topological index proposed by Randić [24] for trees and extended to all graphs by Klein, Lukovits, and Gutman [22] as

$$WW(G) = \frac{1}{2}W_1(G) + \frac{1}{2}W_2(G).$$
Let G be a partial cube, \mathcal{F} its Θ-partition, and $F,F' \in \mathcal{F}, F \neq F'$. Then we will denote $n_{11}(F,F') = |G_1(F) \cap G_1(F')|$, $n_{12}(F,F') = |G_1(F) \cap G_2(F')|$, $n_{21}(F,F') = |G_2(F) \cap G_1(F')|$, and $n_{22}(F,F') = |G_2(F) \cap G_2(F')|$. We say that the classes F and F' cross if $n_{k\ell}(F,F') \neq 0$ for $1 \leq k, \ell \leq 2$, and write $F \neq F'$ to denote the fact that F and F' cross, see [20, 23]. Now we can deduce from Theorem 2 the following result given in [17].

Corollary 4 Let G be a partial cube and $\mathcal{F} = \{F_1, F_2, \ldots, F_r\}$ its Θ-partition. Then

$$WW(G) = W(G) + \sum_{i<j} [n_{11}(F_i, F_j) n_{22}(F_i, F_j) + n_{12}(F_i, F_j) n_{21}(F_i, F_j)].$$

Proof. By Theorem 2, $W_2(G) = rW(G) - \sum_{i=1}^r W(G \setminus F_i)$. On the other hand, $WW(G) = W(G)/2 + W_2(G)/2$. Combining these two equalities we get

$$WW(G) = W(G) + \frac{1}{2} \left[(r-1)W(G) - \sum_{i=1}^r W(G \setminus F_i) \right].$$

By Corollary 3 we have

$$(r-1)W(G) = \sum_{j=1}^{r-1} \sum_{i=1}^r n_1(F_i) n_2(F_i) = \sum_{i=1}^r \sum_{j=1}^{r-1} n_1(F_i) n_2(F_i),$$

while on the other hand

$$\sum_{i=1}^r W(G \setminus F_i) = \sum_{i=1}^r [W(G_1(F_i)) + W(G_2(F_i))].$$

Combining (4) and (5) with (3) we obtain:

$$WW(G) = W(G) + \frac{1}{2} \sum_{i=1}^r \left[\sum_{j=1}^{r-1} n_1(F_i) n_2(F_i) - W(G_1(F_i)) - W(G_2(F_i)) \right].$$

Having in mind Corollary 3 we now consider the contribution of a fixed pair of classes F_i and F_j to the right-hand side sum in (6). For the rest of the proof let $n_{11}, n_{12}, n_{21},$ and n_{22} denote $n_{11}(F_i, F_j)$, $n_{12}(F_i, F_j)$, $n_{21}(F_i, F_j)$, and $n_{22}(F_i, F_j)$, respectively.

Suppose first that F_i and F_j cross. Then the contribution of the pair F_i, F_j is

$$\left[(n_{11} + n_{12})(n_{21} + n_{22}) + (n_{11} + n_{21})(n_{12} + n_{22})\right] - \left[(n_{11}n_{12} + n_{21}n_{22})

+(n_{11}n_{21} + n_{12}n_{22})\right] = 2n_{11}n_{22} + 2n_{12}n_{21}.$$
(i) \((n_{11} + n_{12})n_{22} + n_{11}(n_{12} + n_{22}) - (n_{11}n_{12} + n_{12}n_{22}) = 2n_{11}n_{22},\)

(ii) \((n_{11} + n_{12})n_{21} + n_{12}(n_{11} + n_{21}) - (n_{12}n_{11} + n_{11}n_{21}) = 2n_{12}n_{21},\)

(iii) \((n_{21} + n_{22})n_{11} + n_{22}(n_{11} + n_{21}) - (n_{21}n_{22} + n_{21}n_{11}) = 2n_{11}n_{22},\)

(iv) \((n_{21} + n_{22})n_{12} + n_{21}(n_{12} + n_{22}) - (n_{21}n_{22} + n_{22}n_{21}) = 2n_{12}n_{21}.\)

Since in cases (i), (ii), (iii), and (iv) we have \(n_{21} = 0, n_{22} = 0, n_{12} = 0,\) and \(n_{11} = 0,\) respectively, in all cases the contribution of \(F_i\) and \(F_j\) to the right-hand side sum in (6) can be written as

\[2n_{11}n_{22} + 2n_{12}n_{21}\]

which completes the argument. \(\square\)

4 Acknowledgments

The first author was supported in part by the Ministry of Science of Slovenia under the grant P1-0297. We would also like to thank a referee for pointing out two missing cases in the original version of the proof of Corollary 4.
References

