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Abstract

The domination game is played on a graph G by Dominator and Staller. The
two players are taking turns choosing a vertex from G such that at least one
previously undominated vertex becomes dominated; the game ends when no move
is possible. The game is called D-game when Dominator starts it, and S-game
otherwise. Dominator wants to finish the game as fast as possible, while Staller
wants to prolong it as much as possible. The game domination number γg(G) of
G is the number of moves played in D-game when both players play optimally.
Similarly, γ′g(G) is the number of moves played in S-game.

Graphs G with γg(G) = 2, graphs with γ′g(G) = 2, as well as graphs extremal
with respect to the diameter among these graphs are characterized. In particular,
γ′g(G) = 2 and diam(G) = 3 hold for a graph G if and only if G is a so-called
gamburger. Graphs G with γg(G) = 3 and diam(G) = 6, as well as graphs G with
γ′g(G) = 3 and diam(G) = 5 are also characterized. The latter can be described as
the so-called double-gamburgers.
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1 Introduction

The domination game is played on an arbitrary graph G by Dominator and Staller.
The two players are taking turns choosing a vertex from G such that at least one
previously undominated vertex becomes dominated. The game ends when no move is
possible and the score of the game is the total number of vertices chosen. Dominator
wants to minimize the score, while Staller wants to maximize it. By D-game we mean a
game in which Dominator has the first move and by S-game a game started by Staller.
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Assuming that both players play optimally, the game domination number γg(G) of a
graph G denotes the score of D-gameplayed on G. Similarly, the Staller-start game
domination number γ′g(G) is defined as the score of optimal S-game.

The game was introduced in [4] and already received a considerable attention. One
of the reasons for this interest is the so-called 3/5-conjecture from [15] asserting that
γg(G) ≤ 3n/5 holds for any isolate free graph of order n. Trees that attain this bound
were investigated in [5], while recently Bujtas [7] made a breakthrough by proving that
the conjecture holds for all graphs with the minimum degree at least 3. In order to
achieve this result she further developed the proof technique introduced in [6] where
the conjecture is verified for all trees in which no two leaves are at distance 4. Henning
and Kinnersley [11] further established the truth of the 3/5-conjecture over the class
of graphs with minimum degree at least 2, hence the 3/5-conjecture remains open only
for graphs with pendant vertices. We point out that Bujtas’ proof technique already
turned out to be useful elsewhere [8].

Recently, two closely related games were introduced. The total version of the dom-
ination game was investigated in [12] and further studied in [13] where it was proved
that for any graph of order n in which every component contains at least three ver-
tices, the corresponding total invariant is bounded above by 4n/5. The second related
game, named the disjoint domination game, was studied in [9]. Among the additional
investigations of the domination game we mention the complexity studies from [1], the
behaviour of the game played on the disjoint union of graphs [10], and a characteriza-
tion of trees T for which γg(T ) = γ(T ) holds [17], where γ(T ) is the usual domination
number of T .

Motivated in part by the characterization of graphs with γg = 3 and γ′g = 2 from [2]
and by the complexity studies from [1], we study in this paper graphs that have small
game domination number. In the next section we introduce notations needed, recall
some results, and bound the diameter of a graph from above in terms of the game
domination number (see [3, Corollary 4.1] for a closely related result). In Section 3
we first characterize graphs G with γg(G) = 2 and graphs with γ′g(G) = 2. We also
characterize graphs extremal with respect to the diameter among these graphs. In
particular, we introduce the concept of the so-called gamburger and prove that G has
γ′g(G) = 2 and diam(G) = 3 if and only if G is a gamburger. In Section 4 we then
characterize extremal graphs (w.r.t. the diameter) in the class of graphs with the game
domination number equal 3. In particular, γ′g(G) = 3 and diam(G) = 5 hold for a
graph G if and only if G is the so-called double-gamburger.

2 Preliminaries

If x is a vertex of a graph G, then NG(x) (resp. NG[x]) denotes the neigborhood
(resp. closed neighborhood) of x. Let dG(x, y) be the standard shortest-path distance
between vertices x and y of G. The eccentricity eccG(x) of x is max{d(x, y) : y ∈
V (G)} and the diameter diam(G) of G is the maximum eccentricity of its vertices.
SG
r (x) = {y ∈ V (G) : dG(x, y) = r} is called the sphere with center x and radius r and
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BG
r (x) = {y ∈ V (G) : dG(x, y) ≤ r} is called the ball with center x and radius r. If

G will be clear from the context, we will simplify the above notations to N(x), N [x],
d(x, y), Sr(x), Br(x), and ecc(x).

We next collect some known results (or part of the folklore results) to be used later
on. A fundamental result about the domination game is the following theorem for
which the fact that γg(G) ≤ γ′g(G) + 1 holds was proved in [4], while the inequality
γ′g(G) ≤ γg(G) + 1 was later established in [15].

Theorem 2.1 [4, 15] For any graph G, |γg(G)− γ′g(G)| ≤ 1.

If (γg(G), γ′g(G)) = (k, `) then we say that G realizes (k, `). By Theorem 2.1, if G
realizes the pair (k, `), then |k − `| ≤ 1.

Vertices u and v of a graph G are called twins if N [u] = N [v]. Note that twins are
necessarily adjacent. A graph is called twin-free if it contains no twins. The following
result is not difficult to prove and was implicitly or explicitly (cf. [2]) used earlier and
is also stated in [17].

Proposition 2.2 If u and v are twins in a graph G, then γg(G) = γg(G − u) and
γ′g(G) = γ′g(G− u).

A subgraph H of a graph G is guarded in G if for any vertex x in G there exists
a vertex y ∈ V (H) such that N [x] ∩ V (H) ⊆ N [y] ∩ V (H). The vertex y is called a
guard of x in H. (If x ∈ V (H), then x is a guard of itself.) The concept of a guarded
subgraph was introduced in [3] where the following result was proved:

Theorem 2.3 If H is guarded in G, then γg(H) ≤ γg(G) and γ′g(H) ≤ γ′g(G).

To bound the diameter of a graph with its game domination number we recall the
following result proved in [14], cf. also [16].

Proposition 2.4 If n ≥ 1, then

(i) γg(Pn) =

{
dn2 e − 1; n ≡ 3 (mod 4),

dn2 e; otherwise.

(ii) γ′g(Pn) = dn2 e.

We are now ready for the announced bound that was not earlier reported (at least
explicitly) in the literature, hence we include its proof.

Proposition 2.5 If G is a graph, then

(i) diam(G) ≤

{
2γg(G); γg(G) odd ,

2γg(G)− 1; otherwise.

(ii) diam(G) ≤ 2γ′g(G)− 1.
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Moreover, the bounds are tight.

Proof. Let G be a graph and let P be a diametrical path of G. Then P is a shortest
path isomorphic to Pdiam(G)+1 and by the proof of [3, Corollary 4.1], P is guarded in G.
Hence by Theorem 2.3, γg(G) ≥ γg(P ) and γ′g(G) ≥ γ′g(P ). Using the latter inequality
and Proposition 2.4 we get

γ′g(G) ≥ γ′g
(
Pdiam(G)+1

)
=

⌈
diam(G) + 1

2

⌉
≥ diam(G) + 1

2
,

which proves the assertion (ii).
Let γg(G) be odd. Assume by way of contradiction that diam(G) ≥ 2γg(G) + 1.

Then G contains a shortest path P ′ of order 2γg(G) + 2 and hence γg(G) ≥ γg(P ′) =
d(2γg(G) + 2)/2e = γg(G) + 1, a contradiction. Hence diam(G) ≤ 2γg(G) holds when
γg(G) is odd.

Let γg(G) be even and suppose that diam(G) ≥ 2γg(G) holds. Then G contains a
shortest path P ′′ of order 2γg(G) + 1. Since γg(G) is even, 2γg(G) + 1 ≡ 1 (mod 4),
and therefore, γg(G) ≥ γg(P ′′) = d(2γg(G) + 1)/2e = γg(G) + 1, a contradiction. We
conclude that diam(G) ≤ 2γg(G)− 1 holds when γg(G) is even.

That the bounds are tight follows by considering the path graphs. More precisely,
for any k ≥ 1 we have

• γg(P4k) = 2k and diam(P4k) = 4k − 1 = 2γg(P4k)− 1,

• γg(P4k+3) = 2k + 1 and diam(P4k+3) = 4k + 2 = 2γg(P4k+3), and

• γ′g(P2k) = k and diam(P2k) = 2k − 1 = 2γg(P2k)− 1.

�

3 Graphs G with γg(G) = 2 or γ′g(G) = 2

In this section we study the structure of graphs G with γg(G) = 2 or γ′g(G) = 2. Before
doing it, we observe that

• γg(G) = 1 if and only if ∆(G) = n− 1, and

• γ′g(G) = 1 if and only if G is a complete graph.

Note also that if γg(G) = 2 and G is not connected, then G consists of two components,
one containing a universal vertex and the other being complete. Moreover, if γ′g(G) = 2
and G is not connected, then G consists of two complete components. To characterize
connected graphs with γg(G) = 2 we introduce the following concept. We say that a
vertex u of a (connected) graph G is 2-dense, if

• ecc(u) = 2,
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• there is a join between S2(u) and the neighborhood of S2(u) in S1(u), and

• S2(u) induces a clique.

Let u be a 2-dense vertex of G and let L(u) be the neighbors of u that are at distance
3 from S2(u), see Fig. 1. In other words, L(u) = S3(S2(u)). We point out that it is
possible that L(u) = ∅.

u

L(u)

S2(u)

Figure 1: A 2-dense vertex u

Proposition 3.1 If G is a connected graph, then the following hold.

(i) γg(G) = 2 if and only if G contains a 2-dense vertex.

(ii) γ′g(G) = 2 if and only if G is not complete and every vertex lies in a dominating
set of order 2.

Proof. (i) Suppose first that γg(G) = 2 and let u be an optimal first move of Dominator.
Then ecc(u) ≥ 2, for otherwise Dominator could play a universal vertex and finish the
game in one move. Since Staller, by playing a vertex in S1(u), dominates no vertex
in S3(u) it follows that ecc(u) = 2. If there would exist two nonadjacent vertices in
S2(u), then Staller could play any one of them in order to prolong the game for one
more move. Hence S2(u) must induce a clique. Assume finally that there is a vertex
x ∈ S1(u) that is adjacent to y ∈ S2(u) and not adjacent to z ∈ S2(u). Then Staller
can play x (or z) in order to prolong the game for one more move. Therefore there is
no such vertex z, that is, there is a join between S2(u) and the neighborhood of S2(u)
in S1(u). We conclude that u is a 2-dense vertex.

Conversely, suppose that G contains a 2-dense vertex u. Then it is straightforward
to see that Dominator forces Staller to finish the game in the next move by playing u.
Hence γg(G) ≤ 2. On the other hand, ecc(u) = 2 implies that diam(G) ≥ 2 which in
turn implies that γg(G) ≥ 2.

(ii) Suppose that γ′g(G) = 2. Then G is clearly not complete. Let next u be an
arbitrary vertex of G. There is nothing to prove if u is a universal vertex (just add
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any vertex to u to form a dominating set). If u is not universal, then if Staller plays u
as the first move, Dominator has a reply v such that the game is over after this move.
But then {u, v} is a dominating set.

Conversely, suppose that G is not complete and every vertex lies in a dominating
set of order 2. Then γ′g(G) ≥ 2 because G is not complete. Moreover, γ′g(G) ≤ 2
because after an arbitrary first move u of Staller, Dominator can play v, where {u, v}
is a dominating set. �

If γg(G) = 2 or γ′g(G) = 2, then G realizes one of the pairs (1, 2), (2, 2), (3, 2),
or (2, 3). Among the twin-free graphs, the classes of graphs that characterize the first
three pairs can be described in the following simple way.

Observation 3.2 Let G be a connected, twin-free graph with γ′g(G) = 2. Then

(i) G realizes (1, 2) if and only if ∆(G) = n− 1.

(ii) G realizes (2, 2) if and only if ∆(G) = n− 2.

(iii) G realizes (3, 2) if and only if ∆(G) ≤ n− 3.

Proof. The statement (i) is clear, (iii) follows from [2, Corollary 3.2], and then (ii)
characterizes the remaining connected, twin-free graphs G with γ′g(G) = 2. �

The last pair to consider is (2, 3). It is straightforward to see that G realizes the
pair (2, 3) if and only if γ(G) = 2 and G contains a vertex that is in no minimum
dominating set.

By Proposition 2.5, if γg(G) = 2 or γ′g(G) = 2, then diam(G) ≤ 3. In the rest of
the section we give an explicit description of the structure of related extremal classes of
graphs, that is, those with the diameter equal to 3. For γg Proposition 3.1 immediately
implies:

Corollary 3.3 Let G be a connected graph. Then γg(G) = 2 and diam(G) = 3 if and
only if G contains a 2-dense vertex u such that L(u) 6= ∅.

In order to characterize graphs with γ′g(G) = 2 and diam(G) = 3, we introduce the
following concept. We say that a connected graph G is a gamburger with a gamburger
structure Q1, T1, T2, Q2, if G is the disjoint union of non-empty subgraphs Q1, T1, T2,
and Q2, where Q1 and Q2 induce cliques with no edges between them and, in addition,
the following hold for any i ∈ {1, 2} (see Fig. 2).

• There is a join between Qi and Ti and there are no edges between Qi and T3−i.

• For any vertex x ∈ Ti there exists a vertex x′ ∈ T3−i ∪Q3−i such that T1 ∪ T2 ⊆
N [x] ∪N [x′].

We first show that every gamburger can be presented in a canonical form.
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Q1

T1

T2

Q2

Figure 2: Gamburger (with cliques Q1 and Q2)

Lemma 3.4 If G is a gamburger with a burger structure Q1, T1, T2, Q2, then there
exists a gamburger structure Q′1, T ′1, T ′2, Q′2 for G such that any vertex from T ′i , 1 ≤
i ≤ 2, has at least one neighbor in T ′3−i.

Proof. Let Q1, Q2, T1, T2 be a gamburger structure for G. For i ∈ {1, 2}, we define
Wi as the subset of vertices of Ti whose neighborhood is included in Ti ∪ Qi. We put
Q′i = Qi ∪Wi and T ′i = Ti \Wi. Note that, since G is connected Wi 6= Ti and then
T ′i is not empty. To show that this defines a new gamburger structure for G, we only
need to show that N [w] = Qi ∪ Ti holds for all w ∈ Wi. Suppose, this is not the case.
Since there is a join between Qi and Ti, this means that there exists x ∈ Ti, which is
not a neighbor of w. Since G is a gamburger, by the definition there exists a vertex
x′ ∈ G \ (Ti ∪ Qi) such that w belongs to N(x′). This is a contradiction with the
definition of Wi. In conclusion, N [w] = Qi ∪ Ti and Q′i induces a clique. �

Lemma 3.5 A gamburger has diameter 3.

Proof. Since Q1 and Q2 are not empty, diam(G) ≥ 3. By Lemma 3.4 we can assume
that every vertex in T1 (resp. T2) has a neighbor in T2 (resp. T1) which in turn implies
diam(G) ≤ 3. �

We can now prove that gamburgers are precisely the graphs G with γ′g(G) = 2 and
extremal diameter.

Theorem 3.6 A graph G has γ′g(G) = 2 and diam(G) = 3 if and only if G is a
gamburger.

Proof. Assume first that G is a gamburger. By Lemma 3.5, diam(G) = 3. We prove
that γ′g(G) is 2. Since diam(G) = 3, γ′g(G) is clearly greater or equal to 2. First,
suppose Staller selects a vertex in one of the two cliques, says Q1. Dominator ends the
game at his turn, by playing any vertex in Q2. Suppose next that Staller does not play
in one of the two cliques, but says on x ∈ T1. There is a vertex x′ ∈ T2 ∪Q2 such that
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N [x]∪N [x′] contains T1 ∪ T2. Since no vertex in Q2 is dominated, playing x′ is a legal
move, which enables Dominator to end the game at his turn.

Conversely, suppose that γ′g(G) = 2 and diam(G) = 3. Let u be an arbitrary
diametrical vertex of G. We set Q1 = {u}, T1 = S1(u), T2 = S2(u) and Q2 = S3(u).
These four sets obviously form a partition of V (G). We claim that Q1, T1, T2, Q2 is
a gamburger structure for G. It is clear that there are no edges that would violate
the gamburger structure, that is, there are no edges between Q1 and Q2 and no edges
between Qi and T3−i for 1 ≤ i ≤ 2. It is also clear that Q1 induced a (one-vertex) clique
and hence that there is a join between Q1 and T1. Whatever Staller plays as her first
move, Dominator has to be able to end the game in the next turn. If Staller plays in
Q2, Dominator will not be able at his turn to simultaneously dominate vertices in Q1

and Q2. Hence, all the vertices of Q2 must be dominated by such a Staller’s first move.
It follows that Q2 induces a clique. Assume next that Staller plays a vertex y ∈ T2. In
order to dominate the vertex in Q1, Dominator has to play in T1 ∪Q1. Hence, all the
vertices of Q2 are adjacent to y. Since y was an arbitrary vertex of T2, it follows that
there is a join between Q2 and T2. Consider now an optimal move y′ of Dominator. As
already observed, y′ belongs to T1 ∪Q1. Since the game ends with this move, it follows
that T1 ∪ T2 ⊆ N [y] ∪ N [y′]. Similarly, for all x ∈ T1, there is a vertex x′ ∈ T2 ∪ Q2

such that T1 ∪ T2 ⊆ N [x] ∪N [x′]. In conclusion, G is a gamburger and Q1, T1, T2, Q2

is a gamburger structure for G. �

If a gamburger G with a gamburger structure Q1, T1, T2, Q2 contains a vertex
x ∈ T1 such that T1 ∪ T2 ⊆ N [x], then we say that G is a full-gamburger. We will also
say that the vertex x is a full vertex of G.

With this definition we can specialize Theorem 3.6 to (2, 2)-graphs as follows.

Corollary 3.7 A graph G is a (2, 2)-graph with diam(G) = 3 if and only if G is a
full-gamburger.

Proof. Assume first that G is a full-gamburger. By Theorem 3.6, γ′g(G) = 2 and
diam(G) = 3. Note that a full vertex x from T1 is 2-dense. Hence γg(G) = 2 holds by
Proposition 3.1.

Conversely, suppose G is a (2, 2)-graph with diameter 3. By Theorem 3.6, G has
a gamburger structure Q1, T1, T2, Q2. Moreover, by Lemma 3.4 we may without loss
of generality assume that every vertex in Ti has a neighbor in T3−i, 1 ≤ i ≤ 2. Let x
be an optimal first move of Dominator in D-game. Then x belongs to T1 ∪ T2, for if x
would belong to Qi, Staller could play in Ti without ending the game. Assume without
loss of generality that x ∈ T1 and suppose that N [x] does not contain T1 ∪ T2. Let y
be a vertex of T1 ∪ T2 which is not in N [x]. If y belongs to T1, Staller can play y and
this will not end the game. If y belongs to T2, we know that y has a neighbor in T1,
say y′. Clearly, y′ is distinct from x, hence playing y′ is a legal move because it newly
dominates y. In both cases, we thus have a contradiction with γg(G) = 2. We conclude
that T1 ∪ T2 ⊆ N [x] and hence x is a full vertex of the full-gamburger G. �
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4 On graphs with game domination number 3

The class of graphs G with γg(G) = 3 seems too rich to allow some nice characterization.
In [2] the subclass of these graphs with the property that γ′g(G) = 2 was characterized.
For instance, the cycles C5 and C6 both belong to this class. In view of Proposition 2.5,
in the first part of this section we characterize the subclass of γg = 3 graphs extremal
with respect to the diameter, that is graphs with γg(G) = 3 and diam(G) = 6. For
instance, this class contains P7 and is disjoint from the above class. That the two
classes are disjoint follows from facts that γ(G) = 2 holds for all graphs G from the
first class and γ(G) ≥ 3 for all graphs G from the second class. In Fig. 3 the situation
is resumed.

γg = 3

γ′g = 2 diam = 6

C5, C6 P7

P5, P6

Figure 3: Subclasses of γg = 3 graphs

In the second part of the section we then characterize the graphs G with γ′g(G) = 3
and diam(G) = 5.

4.1 Graphs with γg = 3 and diam = 6

Full-burgers turned out to be useful also for the first main result of this section. In
addition to this concept, we also introduce the following. If G is a connected graph,
then a vertex u of G is nice if the following conditions are fulfilled.

• There exists v1 ∈ S1(u) such that N [v1] = B2(u).

• There is a join between N(S3(u)) ∩ S2(u) and S3(u).

• S3(u), S4(u), S5(u), S6(u) is a full-gamburger structure with a full vertex in S5(u).

With these notations, the announced result reads as follows.

Theorem 4.1 If G is a connected graph, then the following statements are equivalent.

(i) γg(G) = 3 and diam(G) = 6.

(ii) Any diametrical pair of vertices contains at least one nice vertex.

(iii) There exists a nice diametrical vertex.
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Proof. We first prove that (i) implies (ii). Let u1 and u2 be vertices of G with
d(u1, u2) = 6 and let P be a shortest u1, u2-path. Since γg(G) = 3 = γg(P7), and
because the two neighbors of pendant vertices of P7 are the only optimal start moves
for Dominator when playing D-game on P7, we infer that Dominator’s first move must
be either in S1(u1) or in S1(u2). Indeed, for otherwise Staller could guarantee (by con-
sidering the game restricted to P ) the game to last at least four moves. Let i ∈ {1, 2}
be such such that we have an optimal move for Dominator in S1(ui). For convenience,
we will write Sj , 0 ≤ j ≤ 6, instead of Sj(ui). Set also u = ui.

Since the diameter of the graph is 6, the spheres Sj are non-empty and form a
partition of V (G). We are going to prove several claims that will establish the structure
as described in (ii). Let x ∈ S1 be an optimal first move of Dominator.

Claim 1. There exists a vertex v1 ∈ S1 such that N [v1] = B2(u).
Staller’s move could be in S4. To finish the game in three turns, Dominator must then
play in S5 ∪ S6. Hence, his first move x must dominate the whole B2(u) and therefore
x = v1 is a required vertex.

Claim 2. There is a join between N(S3) ∩ S2 and S3.
Staller could play her first move anywhere in N(S3)∩S2. Such moves are actually legal
because they dominate at least one new vertex in S3. In that case Dominator has to
answer in S5. Hence, all the vertices in S3 must have been dominated by the Staller’s
move. Since this move of Staller in N(S3) ∩ S2 was arbitrary, we have a join between
N(S3) ∩ S2 and S3.

It remains to prove that S3, S4, S5, S6 form a full-gamburger structure with a full
vertex in S5.

Claim 3. S3 and S6 are cliques.
Assume Staller plays first in S3 (resp. S6). Dominator must play next in S5 ∪S6 (resp.
S3∪S4). Since this move of Dominator has to end the game, all the vertices of S3 (resp.
S6) must have been dominated by the move of Staller. This move could be arbitrary in
the sphere, because x dominates no vertex in S3. It follows that S3 (resp. S6) induces
a clique.

Claim 4. There is a join between S3 and S4 and between S5 and S6. Moreover, for
any vertex y in S4 (resp. in S5) there is a vertex y′ in S5 ∪ S6 (resp. in S3 ∪ S4) such
that N [y] ∪N [y′] contains S4 ∪ S5.
Suppose Staller plays a vertex y in S4. Dominator must play next in S5 ∪ S6. Hence,
all the vertices of S3 must have been dominated by the move of Staller. Because y is
an arbitrary vertex from S4, there must be a join between S3 and S4. Let now y′ in
S5∪S6 be an optimal answer of Dominator. Vertices of S4∪S5 could only be dominated
by the last two moves of the game, that is, by y and y′. Therefore, these two spheres
are contained in N [y] ∪N [y′]. Similarly, when Staller plays as her first move a vertex
y from S5, Dominator replies by playing a vertex y′ ∈ S3 ∪ S4 and we get the same
conclusion.

Until now we have already seen that S3, S4, S5, S6 defines a gamburger structure.
Hence it remains to prove the following.
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Claim 5. The gamburger on S3, S4, S5, S6 has a full vertex in S5.
As in Claim 2, assume that Staller plays in S2. Dominator has to answer in S5 and
must dominate all the vertices in S4, S5 and S6 with this move. Therefore, such a reply
of Dominator in S5 is a full vertex of the gamburger with the gamburger structure
S3, S4, S5, S6.

In conclusion we have proved that u is a nice vertex.

Since (ii) trivially implies (iii), it remains to prove that (iii) implies (i). Assume
that there exists a nice diametrical vertex u. As above, we simply write Si instead of
Si(u), for any i ∈ {0, . . . , 6}. Let v1 be a vertex in S1 such that N [v1] = B2(u).

We prove first that diam(G) = 6. Since S3, S4, S5, S6 induce a gamburger structure,
none of these spheres is empty. Hence ecc(u) = 6 and diam(G) ≥ 6. By Lemma 3.5, the
subgraph induced by S3, S4, S5, S6 has diameter 3. Moreover, using the vertex v1 ∈ S1,
it is easy to show that all the vertices from B2(u) are at distance at most 3 from any
vertex in S3. In conclusion, G has diameter 6.

Since diam(G) = 6, we have γg(G) ≥ 3. Hence, to conclude the proof we need to
show that Dominator could ensure the game to end in three turns. His strategy is to
play v1 as the first move. After that, all the vertices in B2(u) are dominated and the
remaining legal moves for Staller are inG\B1(u). First assume Staller plays inG\B2(u).
Since these vertices induce a gamburger, Theorem 3.6 implies that Dominator has an
answer in G \ B2(u), such that all the vertices of this subgraph are dominated after
this move that clearly ends the game. Second, if Staller plays in S2, then to be legal,
this move has to belong to N(S3). Because of the join between N(S3) ∩ S2 and S3, all
the vertices in S3 are dominated. Dominator can then finish the game by playing a full
vertex in S5. �

We point out that both characterizations from Theorem 4.1 of graphs with γg(G) =
3 and diam(G) = 6 are useful if we wish to give a fast recognition algorithm for these
graphs. Indeed, we only need to select a pair of diametrical vertices and check if one
of them leads to the structure as described in (iii). If not, then we know from (ii) that
no other diametrical vertex can give us the desired structure.

4.2 Graphs with γ′g = 3 and diam = 5

To characterize the graphs from the title, we introduce one more concept. We say that
a connected graph G is a double-gamburger, if G is the disjoint union of non-empty
subgraphs Q1, R1, T1, T2, R2, Q2, for which the following hold for any i ∈ {1, 2}.

• Qi and Ti induce cliques.

• There are joins between Qi and Ri, and between Ri and Ti.

• Ri induces a clique minus a matching Mi.

• If Mi is perfect, then M3−i is empty and there is a join between T1 and T2.

• There exists a vertex xi ∈ Ti, such that T3−i ⊆ N(xi).
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• There are no edges between Qi and G \Ri and between Ri and G \ (Qi ∪ Ti).

See Fig. 4. We say that Q1, R1, T1, T2, R2, Q2 is a double-gamburger structure for G.

x1

x2

Q1 R1 T1 T2 R2 Q2

Figure 4: Double-gamburger

Lemma 4.2 A double-gamburger has diameter 5.

Proof. The graphs H1 and H2, respectively induced by Q1, R1, T1 and T2, R2, Q2 have
diameter 2. For any i ∈ {1, 2}, we have a vertex x ∈ Ti, such that T3−i ⊆ N(x). Using
these vertices, it is straightforward to see that the distance between a vertex in Hi and
the subgraph H3−i is 3. In conclusion, a double-gamburger has diameter 5. �

Theorem 4.3 If G is a connected graph, then the following statements are equivalent.

(i) γ′g(G) = 3 and diam(G) = 5.

(ii) For any diametrical vertex u, defining Q1 = S0(u) ∪W1, R1 = S1(u) \W1, T1 =
S2(u), T2 = S3(u), R2 = S4(u) and Q2 = S5(u), where W1 = S1(u) \N(S2(u)) is
a double-gamburger structure for G.

(iii) G is a double-gamburger.

Proof. We first prove that (i) implies (ii). Let u be a vertex of G with ecc(u) =
5. We are going to prove four claims which together establish that the subgraphs
Q1, R1, T1, T2, R2, Q2 as defined in (ii) form a double-gamburger structure for G. Note
first that these subgraphs are clearly not empty and there are no edges but the one
permitted by the double-gamburger structure. For i ∈ {1, 2}, we denote by ī the other
element of {1, 2}.

Claim 1. For i ∈ {1, 2}, Qi induces a clique, there is a join between Qi and Ri and
there exists u ∈ Tī such that N(u) contains Ti.
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Assume x ∈ Qi is the first move of Staller. If Dominator plays in Ri ∪ Ti, Staller will
be able to play her second move in Tī. In that case, Qī will remain undominated at
the end of the third turn. If he plays in Qī, she could answer in Rī and Ti will not
be dominated. Hence Dominator’s optimal answer is either in Tī or in Rī. In both
cases, there is still a legal move for Staller in Tī∪Rī. Since the game must end in three
turns, this implies that Qi∪Ri has been entirely dominated by x. Hence, Qi is a clique
and there is a join between Qi and Ri. Now assume, that Dominator’s move was in
Tī. Staller can play her last move in Rī. So, the game could end in three turns only
if Dominator’s move dominates all Ti. On the other hand, if Dominator played in Rī,
Staller can play her last move in Tī. Once more, this move must dominate all Ti. In
conclusion, we have at least one vertex in Tī whose neighborhood contains Ti.

Claim 2. For i ∈ {1, 2}, Ti induces a clique and there is a join between Ti and Ri.
By way of contradiction, assume there exists x ∈ Ti, such that N [x] does not contain
Ti ∪ Ri and let y be a vertex in (Ti ∪ Ri) \ N [x]. Staller can play the vertex x. If
Dominator plays in Qi ∪Ri ∪ Ti, Staller will be able to play her second move in Tī. If
he plays in T2, she could answer in Qi. In both cases, the vertices in Qī will not be
dominated at the end of the third turn. Therefore, Dominator has to play in Rī ∪Qī.
Now, if y ∈ Ti, playing y is a legal move for Staller and after this move no vertex in Qi

is dominated. Otherwise, if y ∈ Ri, then this vertex has a neighbor y′ ∈ Ti. Indeed, the
way we define Ti and Ri ensures that N(Ti) \ Ti = Ri. Since playing y′ will dominate
the new vertex y, it is a legal move. By playing it, Staller ensures that no vertex in Qi

is already dominated. In both cases, the game is not over at the end of the third turn.
This is a contradiction with the assumption γ′g(G) = 3.

Claim 3. For i ∈ {1, 2}, Ri induces a clique from which a matching Mi has been
removed.
By way of contradiction, suppose that Ri does not induced a clique minus a matching.
In other words, there exist distinct vertices y, y′ and x in Ri such that x is neither
adjacent to y nor to y′. If Staller starts by playing y, Dominator’s optimal answer is
in Tī ∪ Rī ∪ Qī. Otherwise, Staller could play her second move in Tī, and Qī would
remain undominated. After the move of Dominator, y′ is still undominated. Hence
Staller can play this vertex as her second move. Finally, after these three turns, x is
not yet dominated, again contradicting γ′g(G) = 3.

Claim 4. For i ∈ {1, 2}, if the matching Mi is perfect, then Mī is empty and there is
a join between T1 and T2.
Assume first there is not a join between T1 and T2. Then Staller can choose a vertex
in Ti, such that at least one vertex in Tī is not dominated. As in Claim 2, Dominator
must play in Rī ∪ Qī. Since Tī is not completely dominated after Staller’s first move,
Dominator has no choice but to play in Rī. Moreover, Staller could play her last move
in Qi ∪Ri. So all the vertices in Tī ∪Rī ∪Qī must be dominated by Dominator’s move.
For we must have a vertex in Rī whose closed neighborhood contains at least Rī. In
conclusion, Mī is not a perfect matching.
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Suppose now that Mī is not empty (i.e. Rī does not induce a clique). Staller can
play a vertex in Rī, whose closed neighborhood does not contain Rī. As in Claim 3,
Dominator has to play in Ti ∪Ri ∪Qi. But, Staller would be in all cases able to make
her last move in Rī. Hence, the game could end in three turns only if Dominator can
dominate all Ti ∪ Ri ∪ Qi in one move. As above, it implies that the matching Mi is
not perfect.

Statement (ii) obviously implies (iii). It remains to prove that (iii) leads to (i).
Assume that G has a double-gamburger structure. By Lemma 4.2, diam(G) = 5 which
in turn implies that γ′g(G) ≥ 3. So, we only have to give a strategy for Dominator
which ensures that the game ends in at most three turns. By symmetry, we have three
cases.

Case 1. Staller’s first move is in Q1. Then Dominator chooses to play a vertex from T2

whose neighborhood contains T1. Clearly, after such a move, all the vertices of G \Q2

are dominated. Moreover, all the remaining legal moves for Staller are in R2 ∪ Q2.
Since there is a join between these two sets, whatever she plays, all the vertices in Q2

will be dominated and the game will be over in three turns.

Case 2. Staller’s first move is in R1. They are two possibilities. First, the matching
M2 removed from a clique to get R2 is perfect. Therefore R1 is a clique. Dominator
selects a vertex in R2. All the vertices of G, except one in R2, are dominated after this
move. Staller has no choice but to end the game by selecting a vertex in the closed
neighborhood of this last undominated vertex. Second, the matching M2 is not perfect.
Hence, there is a vertex x ∈ R2 whose neighborhood contains R2. Dominator chooses
this vertex. Now, there is at most one undominated vertex in G, which is actually in
R1. Staller has to dominated this vertex and the game is over after her move.

Case 3. Staller’s first move is in T1. Suppose first that we have a join between T1 and
T2. Dominator selects any vertex in Q2. On the other hand, if there is no join between
T1 and T2, then M2 is not a perfect matching and we have a vertex x ∈ R2 such that
N [x] contains T2 ∪ R2 ∪ Q2. Dominator plays this vertex. In both situations, all the
vertices in G \Q1 are now dominated. The legal moves for Staller are only in Q1 ∪R1.
Since there is a join between these two sets, whatever she chooses the game will end
after her move. �

As for Theorem 4.1, both characterizations of graphs with γ′g(G) = 3 and diam(G) =
5 are useful for a fast recognition algorithm.

To conclude the paper we show that a double-gamburgerG always has γg(G) = 3.
In other words, the following is true.

Corollary 4.4 A graph G is a (3, 3)-graph of diameter 5 if and only if G is a double-
gamburger. In particular, there is no (4, 3)-graph with diameter 5.

Proof. By Theorem 4.3 we only need to prove that if G is a double-gamburger, then
γ′g(G) = 3. Since diam(G) = 5, [3, Corollary 4.1] implies that γg(G) ≥ 3. Hence we
only have to prove that Dominator can end the game in at most three turns.
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Let M1 and M2 be the two matchings defined by the double-gamburger structure
of G. Assume first that both are not perfect. Then Dominator can start by playing
a vertex in R1 which dominates all R1. As his second move, he selects a vertex in R2

which dominates all R2. Such a vertex is still available, because Staller plays optimally
and hence she did not select such a vertex. Playing this way, all the vertices will be
dominated at the end of the third turn. On the other hand, if one of the matching, say
M1 is perfect, by the double-gamburger structure of G, R2 is a clique and we have a
join between T1 and T2. Dominator starts the game with any vertex of Q1. If Staller
answers in R1 ∪ T1 ∪ T2, Dominator plays his second move in R2. If Staller plays in
R2 ∪ Q2, then he plays in T2. Note that these two cases are exhaustive, because the
vertices in Q1 are not legal moves for Staller. Finally, it is straightforward to show that
in both cases all the vertices are dominated at the end of the third turn. �
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