The domination number of exchanged hypercubes

Sandi Klavžar
Faculty of Mathematics and Physics
University of Ljubljana, Slovenia
and
Faculty of Natural Sciences and Mathematics
University of Maribor, Slovenia
and
Institute of Mathematics, Physics and Mechanics, Ljubljana
sandi.klavzar@fmf.uni-lj.si

Meijie Ma
Department of Mathematics
Zhejiang Normal University
Jinhua, Zhejiang, 321004, China
mameij@mail.ustc.edu.cn

July 22, 2013

Abstract

Exchanged hypercubes [Loh et al., IEEE Transactions on Parallel and Distributed Systems 16 (2005) 866–874] are spanning subgraphs of hypercubes with about one half of their edges but still with many desirable properties of hypercubes. Lower and upper bounds on the domination number of exchanged hypercubes are proved which in particular imply that $\gamma(EH(2,t)) = 2^{t+1}$ holds for any $t \geq 2$. Using Hamming codes we also prove that $\gamma(EH(s,2^k-1)) \leq (2^s-2^{k})\gamma(Q_t)+2(\gamma(Q_{2^s})+1)$ holds for $s \geq k \geq 3$.

Key words: interconnection network; hypercube; exchanged hypercube; domination number; Hamming code

AMS Subj. Class.: 05C69, 68R10

1 Introduction

Hypercubes form a fundamental model for parallel computers and interconnection networks, cf. [22, Chapter 7]. They have many fine properties that are essential for network efficiency, such as recursive decomposition, lots of symmetries, low regularity, and
small diameter. Hypercubes also allow straightforward (local) routing and are Hamiltonian. For more information on their fault tolerance with respect to the hamiltonicity see [19, 20] and references therein. Having all this in mind it comes with no big surprise that machines based on hypercubes have actually been implemented, see [22, p. 115] for the list of implementations.

Interconnection networks often require a distribution of limited supply of resources and from this point of view various kinds of dominating sets serve as possible locations for placement of resources. For general aspects of the role of domination in complex networks see the book chapter [1]. Unfortunately, the exact domination number is known only for small dimensional hypercubes and two infinite families: $\gamma(Q_3) = 2$, $\gamma(Q_4) = 4$, $\gamma(Q_5) = 7$, $\gamma(Q_6) = 12$, and $\gamma(Q_n) = 2^{n-k}$ for $n = 2^{k} - 1$ or $n = 2^k$, see [8]. In general, $\gamma(Q_n) \leq 2^{n-3}$ for $n \geq 7$ [3]. For some variations of domination studied on hypercubes see [3, 7, 17], while for domination of closely related Fibonacci cubes see [4, 18]. Domination was also studied on other types of interconnection networks as for instance on toroidal meshes [21].

Since domination is very difficult on hypercubes, they are not very appropriate when dealing with domination-type problems. In this note we instead study the domination number of exchanged hypercubes $EH(s, t)$. This two-parametric family of graphs was proposed by Loh et al. [13] and constitute a variation of the hypercube networks with numerous appealing properties, see [15] for their bipancyclicity and [10, 14, 16] for their connectivity and super connectivity, important measures for the fault-tolerance of networks. In the special case when $s = t$, the exchanged hypercubes coincide with the so-called dual-cubes, a class of hypercube-like networks studied in [2, 5, 11, 12].

We proceed as follows. In the next section we introduce the exchanged hypercubes, recall some of their properties, and define other concepts used in this note. Then, in Section 3, our results are presented. We prove several bounds on the domination number of exchanged hypercubes and deduce from them that if $t \geq 2$, then $\gamma(EH(2, t)) = 2^{t+1}$. This exact result appears appealing because, as we have noted above, the domination number of the usual hypercubes is an intrinsically difficult problem. Using the fact that $Q_{2^{k}-1}$ contains a perfect code (which is just a corresponding Hamming code) we also prove that $\gamma(EH(s, 2^k - 1)) \leq (2^s - 2^k)\gamma(Q_1) + 2^t(\gamma(Q_s) + 1)$ holds for $s \geq k \geq 3$.
2 Preliminaries

Graphs considered here are simple, finite, and connected.

If \(n \) is a positive integer, then the \(n \)-dimensional hypercube (or \(n \)-cube, for short) \(Q_n \) is the graph with vertex set \(\{0,1\}^n \), two vertices (strings) being adjacent if they differ in exactly one coordinate. Hypercubes are vertex-transitive graphs, hence all vertex-deleted subgraphs \(Q_n - v \), \(v \in V(Q_n) \), are isomorphic, we denote it with \(Q_n^- \).

The distance between vertices \(u, v \in V(Q_n) \) is equal to the Hamming distance between \(u \) and \(v \), denoted \(H(u,v) \), that is, the number of coordinates in which \(u \) and \(v \) differ.

Exchanged hypercubes are spanning subgraphs of hypercubes. Let \(u = u_d \ldots u_0 \in \{0,1\}^d \) be a binary string, \(d \geq 1 \). If \(j \geq i \), then we will use the notation \(u_{ji} \) for the substring of \(u \) between \(u_j \) and \(u_i \), that is, \(u_{ji} = u_j \ldots u_i \). For any integers \(s \geq 1 \) and \(t \geq 1 \), the exchanged hypercube \(EH(s,t) \) is the graph with the vertex set \(\{0,1\}^{s+t+1} \)

Hence, if \(u \in V(EH(s,t)) \), then its coordinates are \(u_s \ldots u_{s+t}u_{t+1} \ldots u_1u_0 \). Vertices \(u \) and \(v \) are adjacent if one of the following conditions is satisfied:

(i) \(u_{s+t+1} = v_{s+t+1}, u_0 \neq v_0 \),
(ii) \(u_0 = v_0 = 1, H(u_{t+1}, v_{t+1}) = 1 \), and \(u_{s+t+1} = v_{s+t+1} \),
(iii) \(u_0 = v_0 = 0, H(u_{s+t+1}, v_{s+t+1}) = 1 \), and \(u_{t+1} = v_{t+1} \).

Clearly, \(EH(s,t) \) has \(2^{s+t+1} \) vertices. If \(u \in V(EH(s,t)) \) and \(u_0 = 0 \), then the degree of \(u \) is \(s+1 \), otherwise the degree of \(u \) is \(t+1 \). It is also straightforward that for any \(s \) and \(t \), the exchanged hypercube \(EH(s,t) \) is isomorphic to \(EH(t,s) \). The ratio of the number of edges in \(EH(s,t) \) to that of \(Q_{s+t+1} \) is \(1/2 + 1/(2(s + t + 1)) \) [6].

If \(G \) is a graph, then \(D \subseteq V(G) \) is a dominating set if every vertex of \(V(G) - D \) is adjacent to some vertex of \(D \). The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set of \(G \). A dominating set \(D \) of \(G \) is a perfect code if any two vertices from \(D \) are at distance at least 3. Hence the closed neighborhoods of the vertices from a perfect code \(D \) partition the vertex of \(G \), cf. [9, Theorem 4.1].

A matching of a graph \(G \) is a set of independent edges and a perfect matching is a matching \(M \) such that each vertex is an endpoint of an edge from \(M \). Finally, if \(X \subseteq V(G) \), then the closed neighborhood \(N[X] \) is \(\bigcup_{u \in X} N[u] \), where \(N[u] \) is the closed neighborhood of \(u \).
3 Results

We begin with the following bounds:

Theorem 3.1 If $s, t \geq 1$ and $s \leq t$, then

$$\max\{2^t \gamma(Q_s), 2^s \gamma(Q_t)\} \leq \gamma(EH(s, t)) \leq (2^s - 1)\gamma(Q_t) + 2^t \gamma(Q_s).$$

Proof. Consider the following edge-subsets of $EH(s, t)$:

$$E_1 = \{uv : u_{s+t+1} = v_{s+t+1}, u_0 \neq v_0\},$$
$$E_2 = \{uv : u_{s+t+1} = v_{s+t+1}, H(u_{t+1}, v_{t+1}) = 1, u_0 = v_0 = 1\},$$
$$E_3 = \{uv : u_{t+1} = v_{t+1}, H(u_{s+t+1}, v_{s+t+1}) = 1, u_0 = v_0 = 0\}.$$

Let $EH_1(s, t)$ be the subgraph of $EH(s, t)$ induced by the edges E_2. Then $EH_1(s, t)$ is the disjoint union of 2^s copies of Q_t, we denote these cubes with $Q_t^{(i)}$, $1 \leq i \leq 2^s$. Indeed, fixing the leftmost s bits and fixing the rightmost bit to 1, the induced subgraph is isomorphic to Q_t. Moreover, there are no edges between two such induced subgraphs isomorphic to Q_t. Similarly, the subgraph $EH_0(s, t)$ of $EH(s, t)$ induced by the edges E_3 consists of 2^t subgraphs isomorphic to Q_s denoted with $Q_s^{(i)}$, $1 \leq i \leq 2^t$. Finally, the edges from E_1 form a perfect matching of $EH(s, t)$, it is a matching between $EH_0(s, t)$ and $EH_1(s, t)$. More precisely, for any i, any vertex of $Q_t^{(i)}$ has exactly one neighbor in $EH_0(s, t)$, each of these neighbors belonging to different $Q_s^{(j)}$. See Fig. 1.

![Figure 1: Subgraphs $EH_0(s, t)$ and $EH_1(s, t)$ of $EH(s, t)$](image-url)
For the upper bound, consider the t-cube $Q_t^{(1)}$. Then each of $Q_t^{(i)}$, $1 \leq i \leq 2^t$, has a (unique) neighbor in $Q_t^{(1)}$. In each of the cubes $Q_t^{(i)}$ select a minimum dominating set D_i such that if $x \in N[V(Q_t^{(1)})] \cap Q_t^{(i)}$ then $x \in D_i$. Such a dominating set exists since hypercubes are vertex-transitive graphs.) Then $Q_t^{(1)}$ is dominated by $\bigcup_{i=1}^{2^t} D_i$, see Fig. 1 again. For $2 \leq i \leq 2^s$ let D'_i be a minimum dominating set of $Q_t^{(i)}$. Then $D = \left(\bigcup_{i=1}^{2^t} D_i \right) \bigcup \left(\bigcup_{i=s+1}^{2^s} D'_i \right)$ is a dominating set of $EH(s,t)$. Clearly, $|D| = 2^t \gamma(Q_s) + (2^s - 1) \gamma(Q_t)$.

Let D be a dominating set of $EH(s,t)$ and let $T_i = D \cap N[V(Q_t^{(i)})]$, $1 \leq i \leq 2^s$. Then $|T_i| \geq \gamma(Q_t)$, for otherwise $T_i \cap Q_t^{(i)}$ together with the neighbors of the vertices from $T_i - V(Q_t^{(i)})$ that lie in $Q_t^{(i)}$ would form a dominating set of order strictly smaller than $\gamma(Q_t)$. In addition, if $i \neq j$, then $T_i \cap T_j = \emptyset$ because a vertex from $T_i - Q_t^{(i)}$ has exactly one neighbor in $EH_1(s,t)$. It follows that

$$|D| \geq \sum_{i=1}^{2^s} |T_i| \geq 2^s \gamma(Q_t).$$

Applying analogous arguments to $EH_0(s,t)$ we infer that $|D| \geq 2^t \gamma(Q_s)$. This proves the lower bound. \hfill \square

For another upper bound the following lemma will be useful.

Lemma 3.2 If $n \geq 3$, then $V(Q_n)$ can be partitioned into 4 (pairwise disjoint) dominating sets.

Proof. For $n = 3$, the partition $\{\{000, 111\}, \{100, 011\}, \{010, 101\}, \{001, 110\}\}$ does the job. We proceed by induction. Let $n \geq 3$ and let $V(Q_n) = \bigcup_{i=1}^4 D_i$, where each D_i ($1 \leq i \leq 4$) is a dominating set of Q_n, and \bigcup denotes the disjoint union of sets. For $1 \leq i \leq 4$ set

$$D'_i = \{0u : u \in D_i\} \cup \{1u : u \in D_i\}.$$

Then it is straightforward to verify that each D'_i is a dominating set of Q_{n+1} and that $V(Q_{n+1}) = \bigcup_{i=1}^4 D'_i$. \hfill \square

Proposition 3.3 If $2 \leq s \leq t$ and $t \geq 3$, then

$$\gamma(EH(s,t)) \leq (2^s - 4) \gamma(Q_t) + 2^t (\gamma(Q_s) + 1).$$
Proof. Since \(t \geq 3 \), Lemma 3.2 guarantees the existence of a partition \(V(Q_t) = \bigcup_{i=1}^{4} D_i \), where each \(D_i \) is a dominating set of \(Q_t \). Since \(s \geq 2 \), \(EH_1(s, t) \) (defined in the proof of Theorem 3.1) contains the four \(t \)-cubes \(Q_t^{(i)} \), \(1 \leq i \leq 4 \). For any \(i \), let \(D_i' \) be the isomorphic copy of \(D_i \) in \(Q_t^{(i)} \). For \(5 \leq i \leq 2^s \), let \(D_i'' \) be a minimum dominating set of \(Q_t^{(i)} \), and for \(1 \leq i \leq 2^t \), let \(D_i'' \) be a minimum dominating set of \(\left(Q_s^{(i)} \right) \). Note that \(\bigcup_{i=1}^{4} D_i' = \bigcup_{i=5}^{2^s} D_i' \bigcup_{i=1}^{2^t} D_i'' \) is a domination set of \(EH(s, t) \). Since

\[
|D| = \left| \bigcup_{i=1}^{4} D_i' \right| + \left| \bigcup_{i=5}^{2^s} D_i' \right| + \left| \bigcup_{i=1}^{2^t} D_i'' \right| = 2^t + (2^s - 4) \gamma(Q_t) + 2^t \gamma(Q_s),
\]

the result follows. \(\square \)

We are now ready for our key insight.

Theorem 3.4 If \(t \geq 2 \), then \(\gamma(EH(2, t)) = 2^{t+1} \).

Proof. Let \(t = 2 \). Then \(\gamma(EH(2, 2)) \geq 8 \) by Theorem 3.1. In Fig. 2 a dominating set of \(EH(2, 2) \) of size 8 is shown, hence \(\gamma(EH(2, 2)) = 8 \).

![Figure 2: A minimum dominating set of EH(2, 2)](image)
Let $t \geq 3$. Then the lower bound $\gamma(EH(s, t)) \geq 2^{t+1}$ again follows from Theorem 3.1. On the other hand, $\gamma(EH(s, t)) \leq 2^{t+1}$ follows from Proposition 3.3 having in mind that $s = 2$ and $\gamma(Q_2^1) = 1$. □

In the proof of Proposition 3.3 we have partitioned the vertex set of Q_n into four dominating sets. If $V(Q_n)$ can be partitioned into more disjoint dominating sets, the upper bound can be improved. This is not possible for $n \leq 5$ as we can find out from the exact domination numbers of these cubes. On the other hand, using Hamming codes this can be done in the following special case.

Theorem 3.5 If $s \geq k \geq 3$, then

$$\gamma(EH(s, 2^k - 1)) \leq (2^s - 2^k)\gamma(Q_t) + 2^t(\gamma(Q_s^t) + 1).$$

Proof. Let $k \geq 3$. Let D_0 be an arbitrary perfect code of Q_{2k-1}. It is well-known that such a code exists, see [9], in fact, it is just a Hamming code of block length $2^k - 1$. Let $e^{(i)}$, $1 \leq i \leq 2^k - 1$, denote the binary word of length $2^k - 1$ with 1 in the ith coordinate and with 0 in any other coordinate. For any i set

$$D_i = \{u + e^{(i)} : u \in D_0\}.$$

We claim that $D_i \cap D_j = \emptyset$ for any $i \neq j$, $0 \leq i, j \leq 2^k - 1$. Note first that $D_0 \cap D_1 = \emptyset$, because if $u \in D_i$, then there exists an $x \in D_0$ such that $u = x + e^{(i)}$ and hence $H(u, x) = 1$. Since for any other vertex y of D_0 we have $H(x, y) \geq 3$, we conclude that $u \neq y$. Let next $u \in D_i$ and $v \in D_j$, where $i, j \geq 1$ and $i \neq j$. Then $u = x + e^{(i)}$ and $v = y + e^{(j)}$ for some $x, y \in D_0$. Because $H(x, y) \geq 3$ it then follows that $u \neq v$.

The mapping $Q_n \to Q_n$ that changes a fixed coordinate in each of the vertices is an automorphism of Q_n. Since an automorphism maps dominating sets onto dominating sets, we infer that D_i, $1 \leq i \leq 2^k - 1$, are dominating sets because D_0 is such.

We now construct a dominating set of $EH(s, 2^k - 1)$ similarly as in the proof of Proposition 3.3. Since $s \geq k$, there exist 2^k cubes $Q_{2^k-1}^{(i)}$, $1 \leq i \leq 2^k$. For any $1 \leq i \leq 2^k - 1$, let D_i' be the isomorphic copy of D_i in $Q_{2^k-1}^{(i)}$ and let D_i'' be the isomorphic copy of D_0 in $Q_{2^k-1}^{(i)}$. For $2^k + 1 \leq i \leq 2^s$, let D_i' be a minimum dominating set of $Q_{t}^{(i)}$, and for $1 \leq i \leq 2^k - 1$, let D_i'' be a minimum dominating set of $Q_{s}^{(i)}$. Then

$$D = \left(\bigcup_{i=1}^{2^k} D_i'\right) \cup \left(\bigcup_{i=1}^{2^k-1} D_i''\right)$$

is a domination set of $EH(s, 2^k - 1)$ of order $(2^s - 2^k)\gamma(Q_t) + 2^t(\gamma(Q_s^t) + 1)$.

□
Acknowledgements

This work was supported in part by ARRS Slovenia under the grant P1-0297, the China-Slovenia bilateral grant BI-CN/11-13-001, and the National Natural Science Foundation of China 11101378.

References

