Relativistic Structural Characterization of Molybdenum and Tungsten Disulfide Materials

Micheal Arockiaraja, Sandi Klavžarb,c,d, S. Ruth Julie Kavithaa*, Shagufa Mushtaqe, Krishnan Balasubramanianf

aDepartment of Mathematics, Loyola College, Chennai 600034, India
bFaculty of Mathematics and Physics, University of Ljubljana, Slovenia
cFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
dInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
eDepartment of Mathematics, Loyola College, University of Madras, Chennai 600034, India
fSchool of Molecular Sciences, Arizona State University, Tempe AZ 85287-1604, USA

Abstract

The advent of two-dimensional transition metal dichalcogenides has triggered an interest in exploring a new class of high performance materials with intriguing physico-chemical attributes. Molybdenum and tungsten disulfides have attracted significant attention due to surface excitons and trions, and large spin-orbit effects in these compounds. Moreover, WS\textsubscript{2} is especially intriguing due to large relativistic effects which results in bound excitons at the edge and biexciton formation in the bilayers. Hence we present a relativistic topological model for the characterization of these two types of metal disulfides. We have employed relativistically weighted graph-theoretical methods for obtaining structural descriptors of these compounds by taking the different shapes on the boundaries and employing the topological cut techniques.

Keywords: Relativistic topological indices; cut method; monolayers; distance-based descriptors.

1 Introduction

A new class of two-dimensional monolayer materials is receiving considerable interest in recent years \cite{1, 2} ever since the advent of 2D graphene materials with novel properties. However, most of the available 2D materials in the pristine forms are intrinsically nonmagnetic and this thus limits their

*Corresponding author : juliesuresh91@gmail.com
range of applications. Hence it is desirable to explore such novel 2D materials with a robust intrinsic ferromagnetic order for optimizing the device applications. Subsequently, the transition metal dichalcogenides (TMDs) [2–4] have been identified as notable candidates for their exclusive ferromagnetism, optical properties, surface excitonic features, and their ability to intercalate and exfoliate, have all contributed to a wide range of applications [5]. Consequently, these materials find applications in a number of areas such as spintronics, energy harvesting, DNA sequencing and personalized medicine as they possess a unique combination of atomic-scale thickness, spin-orbit coupling, direct bandgap and other favorable electronic and mechanical properties [6, 7]. Tungsten disulfide in its 2D form exhibits strongly bound excitons even at the edge, trion fine structures and interesting spin dynamics attributed to a large spin-orbit splitting of the tungsten atoms, all of which result in unusual optical properties of WS\textsubscript{2} [8–12].

Recent advances in sample preparation, optical detection, transfer and manipulation of 2D materials have also triggered a resurgence of scientific and engineering interest in TMDs [3, 6, 14]. In particular, the monolayers of two-dimensional crystals are emphasized more in industrial aspects than their bulk structure as the reduced dimensions significantly enhance many physical characteristics [3, 6, 7, 14]. For instance, the indirect bandgap of 1.3 eV in the bulk phase of MoS\textsubscript{2} changes to a direct bandgap of 1.8 eV in single-layer form [15] thus opening the possibility of a wide range of optoelectronic applications [4, 16]. As there exists many such interesting layer-dependent properties in 2D materials which differ significantly from the properties of the bulk materials, the investigation of various methods to scale the monolayers from their bulk phase has gained its momentum in the recent years [3, 6, 7, 14, 17].

The transition metal disulfides MS\textsubscript{2} (M = Mo,W) are popular among the TMDs that exhibit ideal magnetic and electrical characteristics for exploring the valley-based optoelectronic applications [18]. Their strong in-plane bonding and weak out-of-plane interactions enable the exfoliation of two-dimensional layers of single unit cell thickness although in the case of WS\textsubscript{2} exfoliation is more difficult [11] due to a stronger binding between the layers caused by relativistic effects [19–21] of tungsten. The attainment of a single layer with atomic thickness [3, 17] has enhanced their technological importance as the monolayers exhibit exceptional attributes including amplification of electrical signals with less power consumption, ultralow standby power dissipation and high mobility rates [6]. The direct bandgap, the electronic structure of their monolayers and the propensity to form WS\textsubscript{2} nanotubes emphasize their key roles in various fields such as the lithium ion batteries (LIB) [10, 22], flexible electronic devices [23], photovoltaics [24] and valleytronics [25]. Furthermore, their abundant availability helps in achieving cost-effective thermoelectric devices when compared to other conventional materials like bismuth telluride, offering a unique opportunity of realizing flexible generators for
the wearable technology [6]. Recently Manzeli et al. [26] summarized the various methods used to synthesize these TMDs and their intriguing properties with particular attention to their topological phases.

Graph theory provides powerful and efficient tools for the topological characterization of the underlying structural features through connectivity of the network. Any problem that involves a graph structure can be analyzed and solved using graph-theoretical tools which in turn enlarge the scope of utilization in numerous areas of science and engineering. In particular, chemical graph theory deals with the characterization of the underlying topology by providing elegant structural descriptors that have the efficacy to correlate with the observed properties. It is largely applied to attain the quantitative characterization of material structures, thereby enabling the study of quantitative structure activity (QSAR), property (QSPR) and toxicity (QSTR) relationships of the 2D molecular structures [27,28,62].

Topological indices are molecular parameters, which numerically quantify the underlying network connectivity [30]. They are invariant to the labeling of vertices, and thus form a reliable starting point in the quantitative study of molecules compared to other computationally intensive quantum chemical techniques. In the past decades, numerous papers were devoted to the study of such topological descriptors owing to its ability of predicting the pharmacocchemical and physico-chemical attributes of a compound theoretically [29,31–36,44]. Moreover, such mathematical classifications including hypercubes can have far reaching applications in chemistry including explorations into quantum similarity measures of the periodic table of elements [37] and periodicity of aromatic compounds [38].

Although a graph theoretical model only depicts the underlying topology of the materials and not the chemical or quantum features, significant progress has been made over the years to address this problem [39–41]. Recently a relativistic topological model was proposed [41] by incorporating relativistic quantum chemical structural parameters through weights assigned to each vertex and edge of the 2D network. In the current study, we employ the relativistic structural descriptors to characterizing 2D transition metal disulfides through relativistically weighted graphs.

2 Mathematical Preliminaries

A simple connected graph G comprises of a vertex set $V(G)$ and an edge set $E(G)$. For any two vertices $u, v \in V(G)$, the distance $d_G(u, v)$ between them is defined as the number of edges on a shortest path connecting them. Similarly, we define the distance between a vertex u and an edge $f = ab$ as $d_G(u, f) = \min\{d_G(u, a), d_G(u, b)\}$ and the distance between two edges $e = uv$ and $f = ab$ as $D_G(f, g) = \min\{d_G(e, a), d_G(e, b)\}$. The degree $d_G(u)$ of a vertex u is the number of edges incident
to the vertex \(u \) and the degree \(d_G(e) \) of an edge \(e \) is defined as the number of edges adjacent to \(e \).

In view of the degrees of end vertices of the edge, the weighted bond measures of \(e = uv \) with respect to sum and product are defined as \(w^+_e(e) = d_G(u) + d_G(v) \) and \(w^*_e(e) = d_G(u)d_G(v) \) respectively. The neighborhood \(N_G(v) \) of a vertex \(v \) is the set of all vertices adjacent to the vertex \(v \) and the closeness sets of an edge \(e = uv \in E(G) \) are defined as follows:

\[
N_u(e|G) = \{ x \in V(G) : d_G(u, x) < d_G(v, x) \}
\]

\[
M_u(e|G) = \{ f \in E(G) : d_G(u, f) < d_G(v, f) \}
\]

The counts of the sets \(N_u(e|G) \) and \(M_u(e|G) \) are denoted as \(n_u(e|G) \) and \(m_u(e|G) \), respectively, and \(t_u(e|G) \) denotes their sum. The values of \(n_u(e|G) \), \(m_u(e|G) \) and \(t_u(e|G) \) are analogous. For \(K \subseteq E(G) \), the vertex set of a quotient graph \(G/K \) consists of the connected components of the graph \(G - K \), and two components \(C \) and \(D \) being adjacent if there exists an edge \(cd \in K \) such that \(c \in C \) and \(d \in D \). A subgraph \(H \) of a graph \(G \) is said to be convex if for any two vertices \(u, v \in H \), any shortest path between them in \(G \) lies completely in \(H \), whereas \(H \) is an isometric subgraph if for every pair of vertices, the distance between them in both \(G \) and \(H \) are equal. An isometric subgraph of a hypercube is called a partial cube, where the hypercube \(Q_n \) of dimension \(n \) is defined as the Cartesian product of \(n \) copies of the complete graph \(K_2 \).

A strength-weighted graph \([33]\) \(G_{sw} = (G, SW_V, SW_E) \) is a graph \(G \) in which the vertex and edge set are assigned a pair of strength-weighted functions \((SW_V, SW_E)\) defined as follows:

(i) \(SW_V = (w_v, s_v) \), where \(w_v, s_v : V(G_{sw}) \rightarrow \mathbb{R}_+^+ \) are vertex-weight and strength functions,

(ii) \(SW_E = (w_e, s_e) \), where \(w_e, s_e : E(G_{sw}) \rightarrow \mathbb{R}_+^+ \) are edge-weight and strength functions.

The structural terminologies such as distance, neighborhood and the closeness sets in \(G_{sw} \) remains the same as that of the simple graph \(G \), whereas the degree and the cardinality of closeness sets in \(G_{sw} \) are defined in the following.

\[
d_{G_{sw}}(u) = \sum_{x \in N_{G_{sw}}(u)} s_v(ux),
\]

\[
n_u(e|G_{sw}) = \sum_{x \in N_u(e|G_{sw})} w_v(x),
\]

\[
m_u(e|G_{sw}) = \sum_{x \in N_u(e|G_{sw})} s_v(x) + \sum_{f \in M_u(e|G_{sw})} s_e(f).
\]

Topological indices are molecular descriptors that are enumerated based on the above defined structural parameters of the graphs. Wiener index \([29]\) is the first originated index while determining the physical properties of certain type of alkanes known as paraffins.
Table 1: Topological indices of \(G_{sw} \) where \(e = uv \)

<table>
<thead>
<tr>
<th>Variants</th>
<th>Mathematical Expressions</th>
</tr>
</thead>
</table>
| Wiener | \[
W(G_{sw}) = \sum_{\{u,v\} \subseteq V(G_{sw})} w_v(u)w_v(v)d_{G_{sw}}(u, v) \\
W_v(G_{sw}) = \sum_{\{u,v\} \subseteq V(G_{sw})} s_v(u) s_v(v) d_{G_{sw}}(u, v) + \sum_{\{e,f\} \subseteq E(G_{sw})} s_e(e) s_e(f) D_{G_{sw}}(e, f) + \sum_{u \in V(G_{sw}) \cap f \in E(G_{sw})} s_v(u) s_v(f) d_{G_{sw}}(u, f) \\
W_{tv}(G_{sw}) = \frac{1}{2} \left(\sum_{\{u,v\} \subseteq V(G_{sw})} \{ w_v(u) s_v(v) + w_v(v) s_v(u) \} d_{G_{sw}}(u, v) \right) \\
+ \sum_{u \in V(G_{sw}) \cap f \in E(G_{sw})} w_v(u) s_v(f) d_{G_{sw}}(u, f) \right)
\]
| Szeged | \[
S_{z_v}(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) n_v(e|G_{sw}) n_v(e|G_{sw}) \\
S_{z_e}(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) m_u(e|G_{sw}) m_v(e|G_{sw}) \\
S_{z_{ev}}(G_{sw}) = \frac{1}{2} \sum_{e \in E(G_{sw})} s_e(e) \left[n_u(e|G_{sw}) m_v(e|G_{sw}) + n_v(e|G_{sw}) m_u(e|G_{sw}) \right] \\
S_{zt}(G_{sw}) = S_{z_v}(G_{sw}) + S_{z_e}(G_{sw}) + 2 S_{z_{ev}}(G_{sw})
\]
| Padmakar-Ivan| \[
PI(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) \left[m_u(e|G_{sw}) + m_v(e|G_{sw}) \right]
\]
| Mostar | \[
Mo(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) |n_u(e|G_{sw}) - n_v(e|G_{sw})| \\
w^{+} Mo(G_{sw}) = \sum_{e \in E(G_{sw})} w^{+}_e(e) |n_u(e|G_{sw}) - n_v(e|G_{sw})| \\
w^{*} Mo(G_{sw}) = \sum_{e \in E(G_{sw})} w^{*}_e(e) |n_u(e|G_{sw}) - n_v(e|G_{sw})|
\]
| Edge-Mostar | \[
Mo_e(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) |m_u(e|G_{sw}) - m_v(e|G_{sw})| \\
w^{+} Mo_e(G_{sw}) = \sum_{e \in E(G_{sw})} w^{+}_e(e) |m_u(e|G_{sw}) - m_v(e|G_{sw})| \\
w^{*} Mo_e(G_{sw}) = \sum_{e \in E(G_{sw})} w^{*}_e(e) |m_u(e|G_{sw}) - m_v(e|G_{sw})|
\]
| Total-Mostar | \[
Mo_t(G_{sw}) = \sum_{e \in E(G_{sw})} s_e(e) |t_u(e|G_{sw}) - t_v(e|G_{sw})| \\
w^{+} Mo_t(G_{sw}) = \sum_{e \in E(G_{sw})} w^{+}_e(e) |t_u(e|G_{sw}) - t_v(e|G_{sw})| \\
w^{*} Mo_t(G_{sw}) = \sum_{e \in E(G_{sw})} w^{*}_e(e) |t_u(e|G_{sw}) - t_v(e|G_{sw})|
\]
| Schultz | \[
S(G_{sw}) = \sum_{\{u,v\} \subseteq V(G_{sw})} \left[w_v(v) [d_{G_{sw}}(u) + 2s_v(u)] + w_v(u) [d_{G_{sw}}(v) + 2s_v(v)] \right] d_{G_{sw}}(u, v) \\
+ 2s_v(v) \right] d_{G_{sw}}(u, v)
\]
| Gutman | \[
Gut(G_{sw}) = \sum_{\{u,v\} \subseteq V(G_{sw})} [d_{G_{sw}}(u) + 2s_v(u)][d_{G_{sw}}(v) + 2s_v(v)] d_{G_{sw}}(u, v)
\]
The Schultz index is a degree and distance-based topological index with significant chemical applications and properties [42] and its revised version is called Gutman index [43]. Szeged index and its other variants are bond-based indices that are used to analyze the bond properties of the molecular compound [34,35]. Mostar and its variants are recently synthesized descriptors for scrutinizing the peripheral property of the compound [31,36]. The formulae of several topological indices (TI) of a strength-weighted graph \(G_{sw} \) that are analyzed in this study are tabulated in Table 1, where \(TI(G_{sw}) = TI(G) \) if \(w_v = 1, s_v = 0, w_e = 1 \) and \(s_e = 1 \).

The computational techniques for evaluating these indices continues to be an interesting topic of research [31–33,44,45] because it facilitates the topological characterization without actually calculating the numerical parameters of the graph. The cut method is a classical computational procedure [45] employed to investigate topological indices and is being revamped till date based on the kind of graphs [31,33–35]. In this method, the key role is played by the Djoković-Winkler relation \(\Theta \) [46,47]. This relation is defined on the edge set of a given graph \(G \), where edges \(e = uv \) and \(f = ab \) of \(G \) are in relation \(\Theta \) if \(d_G(v,b) + d_G(u,a) \neq d_G(u,b) + d_G(v,a) \).

The relation \(\Theta \) is reflexive and symmetric in general, but need not be transitive. In the bipartite case, \(\Theta \) is transitive precisely on partial cubes. In general, the transitive closure \(\Theta^* \) forms an equivalence relation, and thus partitions \(E(G) \) into \(\Theta^* \)-classes \(F_1, \ldots , F_k \), which are called cuts. These cuts dissect the given graph into two or more connected convex components in order to determine the corresponding descriptor of the compound [33–35,45]. A coarser partition \(\Theta^{cs} \) is a partition \(\{E_1, \ldots , E_p\} \) in which each set \(E_i \) is the union of one or more \(\Theta^* \)-classes of \(G \). The formulae for determining the topological indices using this technique is summarized in the following theorem.

Theorem 1. [31–33] Let \(G_{sw} = (G, (w_v, s_v), (w_e, s_e)) \) be a strength-weighted graph. Let \(E(G) = \{E_1, E_2, \ldots , E_p\} \) be a \(\Theta^{cs} \)-partition of \(E(G) \), and \(TI \in \{W, W_e, W_w, Sz_e, Sz_w, Sz_{ew}, PI, S, Gut, Mo, Mo_e, Mo_t, w^+ Mo, w^+ Mo_e, w^+ Mo_t, w^+ Mo, w^+ Mo_e, w^+ Mo_t\} \). Then,

\[
TI(G_{sw}) = \sum_{i=1}^{p} TI(G/E_i, (w_v^i, s_v^i), (w_e^i, s_e^i)),
\]

where

(1) \(w_v^i : V(G_{sw}/E_i) \to \mathbb{R}_0^+ \), \(w_v^i(X) = \sum_{x \in V(X)} w_v(x), \forall X \in V(G_{sw}/E_i) \),

(2) \(s_v^i : V(G_{sw}/E_i) \to \mathbb{R}_0^+ \), \(s_v^i(X) = \sum_{xy \in E(X)} s_v(xy) + \sum_{x \in V(X)} s_v(x), \forall X \in V(G_{sw}/E_i) \),

(3) \(w_e^i : E(G_{sw}/E_i) \to \mathbb{R}_0^+ \), \(w_e^i(XY) = \sum_{x \in V(X), y \in V(Y)} w_e(xy), \forall XY \in E(G_{sw}/E_i) \),

where we apply
• if $\{ TI \} \in \{ w^+Mo, w^+Mo_0, w^+Mo_t \}$, $w_e^i(XY) = \sum_{xy \in E_i} (d_{Gsw}(x) + d_{Gsw}(y))$, $\forall XY \in E(G_{sw}/E_i)$.

• if $\{ TI \} \in \{ w^*Mo, w^*Mo_0, w^*Mo_t \}$, $w_e^i(XY) = \sum_{xy \in E_i} d_{Gsw}(x) d_{Gsw}(y)$, $\forall XY \in E(G_{sw}/E_i)$.

• if $\{ TI \}$ is other than the above indices, w_e^i is not needed.

(iv) $s_e^i : E(G_{sw}/E_i) \to \mathbb{R}^+_{\text{d}}$, $s_e^i(XY) = \sum_{xy \in E_i} s_e(xy), \forall XY \in E(G_{sw}/E_i)$.

3 Molybdenum and Tungsten Disulfides

As we noted in the introduction, molybdenum and tungsten disulfides are novel quasi-two-dimensional transition metal disulfides with excellent physico-chemical properties complementary to those of semimetallic graphene \cite{48}, promising several potential applications \cite{4, 18}. These are layered semiconductor materials of the form S–M–S, in which each plane of the metal (M) atoms are sandwiched between two layers of sulfur (S) atoms. Here the bonding within each sandwich layer is strongly covalent while the individual S–M–S layers are loosely held through van der Waals interaction, which thus facilitates the exfoliation of a single layer to a few layers from the bulk \cite{3, 17}.

The two popular crystal phases for the bulk MoS$_2$ and WS$_2$ structures are: (i) a thermodynamically stable 2H phase (hexagonal symmetry) with the $P6_3/mmc$ space group \cite{49} (ii) a metastable 1T phase (trigonal symmetry) with the $P\overline{3}m1$ space group \cite{50} which are characterized by trigonal prismatic and octahedral coordination of metal atoms, respectively as shown in Figure 1. As these phases of MS$_2$ monolayers exhibit substantially different electronic properties (for example, 2H MoS$_2$ is a semiconductor whereas 1T MoS$_2$ is metallic \cite{51}), the characterization of the structure in these phases is efficacious.

![Figure 1: Unit cells and monolayers of MS$_2$ in (a) 2H phase (b) 1T phase](image)

We apply relativistic topological models for the characterization of MoS$_2$ and WS$_2$ as relativistic effects including spin-orbit coupling are significant for such heavy transition metal atoms and main
group atoms as Mo, W, Sn, Pd and so on [19–21,52–54]. Both scalar relativistic effects such as mass-velocity and Darwin corrections as well as 2-component spinor based spin-orbit coupling are quite significant. As shown in ref [21], even the ground state of tungsten atom is completely altered by spin-orbit effects compared to Cr and Mo which tend to have \((n - 1)d^5ns^1\) ground states while W exhibits a \(5d^46s^2\) ground state with a large spin-orbit splitting of over 6200 cm\(^{-1}\) or 0.77 eV [20, 21]. These large spin-orbit effects manifest themselves in the optical, trion, excitonic properties and spin valley dynamics of WS\(_2\), all of which are attributed to the large spin-orbit splitting of W. Moreover such effects modify the topography of the potential energy surfaces of these systems as shown in refs [19–21,52–54].

Consequently, it is of paramount importance to quantify these relativistic effects in any realistic topological characterization of their 2D molecular structures. Such realistic parameters for the materials under consideration can be obtained through a localization of relativistically obtained Bloch orbitals into Wannier functions by localized transformations such as the efficient Pipek-Mezey transformation [55]. Hence we introduce relativistic weights \(\gamma_M\) for the metal atom, \(\gamma_S\) for the sulfur atom and \(\rho_{MS}\) for each edge M–S in the 2D network of MoS\(_2\) and WS\(_2\). We now traverse the relativistic structural attributes of two phases of MS\(_2\) (M = Mo, W) by analyzing their molecular model in various forms depending on the arrangement of the corresponding unit cells [56–59].

3.1 Mathematical Key Idea

The key idea of this paper is to correctly locate the \(\Theta\)-classes of 2H MS\(_2\) and 1T MS\(_2\) monolayers from their underlying graph structures. That is, we are going to show that the graph structures of 2H MS\(_2\) and 1T MS\(_2\) monolayers belong to the family of partial cubes.

The graph structure of 2H MS\(_2\) monolayer can be easily constructed from benzenoid systems by attaching pendant edges in specific places on the boundaries as shown in Figure 2. That benzenoid systems are partial cubes is known already from the seminal paper [60] in which the cut method was introduced. Moreover, it is clear (and well-known) that attaching pendant edges to partial cubes yields partial cubes again. Hence we can conclude that the graph structure of 2H MS\(_2\) monolayers are partial cubes. The graph structure of 1T MS\(_2\) monolayers can be constructed from 2H MS\(_2\) graph structure by adding vertices and edges as shown in the right-hand side of Figure 2. To prove that 1T MS\(_2\) graph structures are partial cubes, we need some preparation.

Let \(G\) be a graph and let \(W_1, W_2 \subseteq V(G)\) be vertex subsets that cover \(V(G)\) and have nonempty intersection, that is, \(W_1 \cup W_2 = V(G)\) and \(W_1 \cap W_2 \neq \emptyset\). Assume further that the subgraphs induced by \(W_1\) and by \(W_2\) are isometric in \(G\), as well as that there are no edges between \(W_1 \setminus W_2\) and \(W_2 \setminus W_1\). Under these assumptions, let \(H\) be a graph constructed as follows.
• Replace each vertex \(w \in W_1 \cap W_2 \) by vertices \(w_1 \) and \(w_2 \) and add the edge \(w_1w_2 \).

• Join \(w_1 \) and \(w_2 \) to all neighbors of \(w \) in \(W_1 \setminus W_2 \) and \(W_2 \setminus W_1 \), respectively.

• If \(w, z \in W_1 \cap W_2 \) and \(wz \in E(G) \), then add edges \(w_1z_1 \) and \(w_2z_2 \).

Then we say that \(H \) is an expansion of \(G \) with respect to \(W_1, W_2 \). In addition, a contraction is the inverse operation of the expansion, that is, we say that in the above construction \(G \) is a contraction of \(H \). Finally, an expansion procedure is a sequence of expansions. With this preparation we can now state the following characterization of partial cubes due to Chepoi [61].

Theorem 2. A graph \(G \) is a partial cube if and only if \(G \) can be obtained from the one vertex graph \(K_1 \) by a sequence of expansions.

Using Theorem 2 we can now deduce the following.

Theorem 3. The graph structures of 1T MS\(_2\) monolayers are partial cubes.

Proof. It is enough to prove that the graph structure of 1T MS\(_2\) without pendant edges are partial cubes. We now construct the 1T MS\(_2\) monolayers without pendant edges as shown in Figure 3. First contract the “ladder” subgraph as shown in the Figure 3. Note that the bottom marked path is isometric in the graph, as well as it is the upper marked path, hence by Theorem 2, the left top graph is a partial cube if and only if the top right graph is a partial cube.

We then proceed analogously by contracting horizontal isometric paths from top to bottom. See Figure 3 again, where the next two steps of the contraction are presented. Continuing in this manner we end up with a grid-like graph \(H \). By the same method (but simpler) we see that \(H \) is a partial cube. More precisely, we contract diagonal ladder subgraphs from, say, top left till bottom right. We conclude that since \(H \) is a partial cube, then so it is the starting 1T MS\(_2\) monolayer.

\(\square \)

3.2 2H MS\(_2\) monolayers

In the 2H phase, each metal atom \(M \) is prismatically coordinated by three surrounding sulfur atoms S, with the S atoms in the upper layer lying directly above those of the lower layer. The grain boundaries of these 2H monolayer MS\(_2\) possess significant impact in the electronic, magnetic and transport properties of the compounds [62, 63]. The schematic representation of the two types of 2H MS\(_2\) monolayers [56, 57] are depicted in Figure 4. The bitrapezium, hexagonal and parallelogram shapes of 2H MS\(_2\) monolayers are respectively denoted by \(BT_H(n,p,q) \), \(H_H(k) \), and \(P_H(p,q) \). Since the hexagonal shape is a particular case of bitrapezium, the relativistic topological indices can easily deduced from that bitrapezium shape.
Figure 2: Construction of MoS$_2$ monolayers from benzenoid systems

Figure 3: Various stages of 1T MS$_2$ monolayer by contraction procedure
The Θ-classes of these structures are grouped into four categories as horizontal $H^#_{\pm i}$, acute $A^#_{\pm i}$, obtuse $O^#_{\pm i}$ and pendant $P^#_{\pm i}$ as depicted in Figure 5, where $\# \in \{b, h, p\}$ denotes the geometry of the structure and $i \in I$, the index set of Θ-classes. The quotient graph of all Θ-classes is a complete graph on two vertices with the vertex strength-weights $(X^H_{ki}(w), X^H_{ki}(s))$, $k = 1, 2$ and edge strength-weights as $(X^H_{3i}(w^+)/X^H_{3i}(w^*), X^H_{3i}(s))$, $X \in \{H, A, O, P\}$ as in Figure 6.

Figure 4: Structure of 2H MS$_2$ monolayers (a) $BT_H(8, 3, 4)$ (b) $P_H(6, 5)$

Figure 5: Various Θ-classes of $BT_H(8, 3, 4)$

Figure 6: Quotient graph of Θ-class where $j \in \{H, T\}$
Theorem 4. For bitapezium shape 2H MS$_2$ monolayer $BT_H(n,p,q)$, $p + q \leq n$, we have

1. $W(BT_H(n,p,q)) = \frac{1}{n!} \left\{ \gamma^2_2(20n^3p^2 + 40n^3pq + 120n^3p + 20n^3q^2 + 120n^3q + 180n^3 - 20n^2p^3 + 90n^2p^2 + 240n^2pq + 710n^2p - 20n^2q^3 - 30n^2q^2 + 350n^2q + 840n^2 + 10np^4 - 60np^3 + 120np^2 + 440npq + 1290np + 10npq^4 + 20npq^3 + 370npq + 1140n - 4p^5 - 10p^4q - 15p^4 - 20p^3q - 90p^3 + 10p^2q + 195p^2 - 10pq^4 + 100pq^3 - 350pq^2 - 240pq + 634p - 4q^5 - 35q^4 - 170q^3 - 385q^2 - 246q + 360) + \gamma^2_2(20n^3p^2 + 40n^3pq + 80n^3p + 20n^3q^2 + 80n^3q + 80n^3 - 20n^2p^3 + 30n^2p^2 + 120n^2pq + 230n^2p - 20n^2q^3 - 30n^2q^2 + 110n^2q + 180n^2 + 10np^4 - 20np^3 + 80np^2 + 150np + 10npq^4 + 20npq^3 + 50np + 100n - 4p^5 - 10p^4q - 15p^4 - 20p^3q - 30p^3 - 10p^2q + 15p^2 - 10pq^4 - 60pq^3 - 110pq^2 - 40pq - 34p - 4q^5 - 25q^4 - 70q^3 - 95q^2 - 46q) + \gamma_s\gamma_3(40n^3p^2 + 80n^3pq + 200n^3p + 40n^3q^2 + 200n^3q + 240n^3 - 40n^2p^3 + 120n^2p^2 + 360n^2pq + 880n^2p - 40n^2q^3 - 60n^2q^2 + 460n^2q + 840n^2 + 20np^4 - 80np^3 + 90np^2 + 46opq + 110np + 20npq^4 + 40npq^3 - 30npq^2 + 390npq + 900n - 8p^5 - 20p^4q - 30p^4 - 40p^3q - 130p^3 + 20p^2q + 30p^2 - 20pq^4 - 160pq^3 - 430pq^2 - 250pq + 318p - 8q^5 - 60q^4 - 220q^3 - 450q^2 - 282q + 180) \right\}.$

2. $W_e(BT_H(n,p,q)) = \frac{3}{n!} \{40n^3p^2 + 80n^3pq + 160n^3p + 160n^3q + 160n^3 - 40n^2p^3 + 120n^2pq + 240n^2p - 40n^2q^3 - 120n^2q^2 + 160n^2 + 20np^4 + 20np^3 + 60np^2q + 80np^2 + 60npq^2 + 240npq + 240np + 20npq^4 + 100npq^3 + 200npq^2 + 240npq + 160n - 8p^5 - 20p^4q - 45p^4 - 40p^3q - 50p^3 - 30p^2q - 50pq^2 + 5p^2 - 20pq^4 - 120pq^3 - 230pq^2 - 130pq + 18p - 8q^5 - 65q^4 - 190q^3 - 235q^2 - 102q}.$

3. $W_{ee}(BT_H(n,p,q)) = \frac{1}{n!} \{\gamma_s(360n + 86p - 194q + 520n^2 + 320n^3 + 35p^2 - 110p^3 - 75p^4 - 16p^5 - 425q^2 - 330q^3 - 115q^4 - 16q^5 + 80np^2 + 20n^2p - 20np^3 + 320n^3p + 40np^4 + 200np^2q + 140n^2q^2 + 320n^3q + 40n^2q^3 + 240npq^4 + 240npq^3 + 80npq^2 + 30npq^1 + 460n^2q + 840n^2 + 20np^4 + 60np^3q + 20np^2q + 180n^2p^2 + 80n^2q^2 + 40npq + 210pq + 400npq + 60np^2q + 460npq + 360n^2pq + 160np^3q) + \gamma_s(240 + 1400n + 526p - 474q + 1360n^2 + 480n^3 + 135p^2 - 210p^3 - 75p^4 - 16p^5 - 845q^2 - 490q^3 - 135q^4 - 16q^5 + 220np^2 + 1460n^2p - 100np^3 + 40np^3p + 40np^4 + 180npq^4 + 140np^4q + 40np^4q^2 + 830pq^2 - 30p^2q - 320pq^2 + 80pq^2 - 80p^3q - 40p^4q + 180n^2p^2 - 80n^3p^3 + 80n^2p^3 - 180n^2q^2 - 80n^2q^2 + 80n^3q^2 - 30p^2q^2 + 184npq + 760npq - 510pq + 920npq + 60np^2q + 60np^2q + 60np^2q + 160n^3pq) \right\}.$

4. $S_{z_e}(BT_H(n,p,q)) = \frac{1}{n!} \gamma_s(120n^3p^3 + 360n^3p^2q + 720n^3p^2 + 360n^3pq^2 + 1440n^3pq + 1400n^3p + 120n^3q^3 + 720n^3q^2 + 1400n^3q + 880n^3 - 180n^2p^4 - 360n^2pq^2 + 2120n^2p^2 - 180n^2q^4 - 880n^2q^3 + 900n^2q^2 + 1000n^2q + 1440n^2 + 90np^5 + 90np^4q - 20np^4 + 180npq^3 - 120npq^2 - 1010npq^3 + 180npq^2q^3 + 360npq^2q^2 - 630npq^2q + 1180npq^2 + 90npq^4 + 120npq^3 - 390npq^2 - 360npq + 360np + 90npq^5 + 380npq^4 + 190npq^3 - 620npq^2 - 120npq^2 - 560n - 15p^6 + 73p^5 - 45p^4q^2 + 75p^4q + 345p^4 + 110p^3q^2 + 430pq^2q + 335pq^2 - 45p^2q^4 - 110p^2q^3 + 270p^2q^2 + 695p^2q + 150p^2 - 75pq^4 - 370pq^3 - 455pq^2 + 72p - 15q^6 - 73q^5 - 135q^4 -
255q^3 - 450q^2 - 272q) + \gamma_3^2(120n^3p^3 + 360n^3p^2q + 1000n^3p^2 + 360n^3pq^2 + 2000n^3pq + 2480n^3p + 120n^3q^3 + 1000n^3q^2 + 2480n^3q + 1920n^3 - 180n^2p^4 - 360n^2p^3q - 480n^2p^3 - 360n^2p^2q^2 - 240n^2p^2q + 2340n^2p^2q - 360n^2pq^2 + 840n^2pq^2 + 8400n^2p^2q - 180n^2p - 180n^2q^3 - 660n^2q^2 + 5120n^2q + 6720n^2 + 90np^5 + 90np^4q - 330np^4 + 180np^3q^2 - 480np^3q - 2670np^3 + 180np^2q^3 + 2510n^2p^2q^2 - 1650np^2q - 180np^2q^2 - 240np^2q^2 - 2490npq^2 + 660npq^2 + 6700npq + 90nq^5 + 430nq^4 - 790nq^3 - 3470nq^2 + 1100nq + 6480n - 15p^6 + 179p^5 - 45p^4q^2 + 115p^4q + 565p^4 + 290p^3q^2 + 610p^3q - 515p^3 - 45p^2q^4 - 110p^2q^2 + 750p^2q^2 - 910p^2 + 55pq^4 - 15pq^3 - 175q^5 - 185q^4 - 15q^3 - 2210q^2 - 1968q + 1440) + \gamma_3\gamma_s(240n^3p^3 + 720n^3p^2q + 720n^3p^2q^2 + 3440n^3p + 3800n^3p^2 + 1720n^3q^2 + 3800n^3q + 2640n^3 - 360n^2p^3 - 720n^2p^3q - 840n^2p^3q^2 + 2280n^2p^2q - 720n^2p^2q^2 + 1680n^2p^2q^2 + 4440n^2p^2q + 9200n^2p - 360n^2q^4 - 2040n^2q^4 - 1680n^2q^4 + 5280n^2q^2 + 6720n^2q + 1800np^5 + 350np^4q - 600np^3q - 600np^3q^2 + 360np^3q^2 + 540np^2q^2 - 2280np^2q^2 + 3290np^2q^2 + 180np^2q^2 - 120np^2q^2 - 2400np^2q^2 - 40np^2q + 4900np + 180np^5q + 510np^4q - 3370npq^2 + 320npq + 5040n - 30p^3b - 25bp^2 - 90p^4q^2 + 190p^4q + 970p^4 + 400p^4q^2 + 1040p^3q + 140p^3q - 90p^2q^4 - 220p^2q^3 + 840p^2q^2 + 1410p^2q - 820p^2 - 20pq^4 - 680pq^3 - 2120pq^2 - 1380pq + 448p - 30q^6 - 130q^5 - 50q^4 - 470q^3 - 2440q^2 - 1920q + 720)\}

5. \[S_{\omega}(B\Gamma_H(n, p, q)) = \frac{1}{2M\alpha_s} \{ 360n^3p^3 + 1080n^3p^2q + 2040n^3p^2q^2 + 1080n^3pq^2 + 480n^3pq + 3840n^3p + 360n^3q^3 + 240n^3q^2 + 3840n^3q + 2400n^3 - 540n^2p^4 - 1080n^2p^3q - 1720n^2p^2q - 3120n^2p^2q^2 - 480n^2pq + 2920n^p - 540n^2q^4 - 2720n^2q^3 - 840n^2q^3 - 3900n^2q^2 - 280n^2q + 1920n^2 + 270np^5 + 270np^4q + 140np^4 + 540np^3q^2 + 360np^3q - 1270np^3 + 540np^3q^2 + 1680np^2q^2 + 750np^2q - 980np^2 + 270np^4q + 840np^3q + 1110np^2q + 1800npq + 1600np + 270npq^2 + 1300npq^3 + 1340npq^4 + 1600npq + 1440n - 45p^6 + 131p^5 - 135p^4q^2 - 15p^4q + 445p^4 + 130p^4q^2 + 450p^3q + 345p^3 - 135p^2q^4 + 490p^2q^3 - 330p^2q^2 - 145p^2q - 160p^2 - 225pq^4 - 1270pq^3 - 2185pq^2 - 1220pq - 236 - 45q^5 - 251q^5 - 695q^4 - 1465q^3 - 1900q - 924q}.\]

6. \[S_{\omega}(B\Gamma_H(n, p, q)) = \frac{1}{2M\alpha_s} \{ \gamma_s (1560n - 10p - 870q + 3120n^2 + 2520n^3 + 145p^2 + 675p^3 + 740p^4 + 175p^5 + 45p^6 - 1625q^3 - 1115q^3 - 550q^4 - 235q^5 - 45q^6 - 2260np^2 + 4640n^2p - 2150np^3 + 4020n^3p + 40np^4 + 270np^5 - 260nq^2 + 1360nq + 1270nq^3 + 4020nq^4 + 270nq^5 - 1775nq^2 + 1115nq^2 - 1190nq^3 + 870nq - 225npq^4 + 105nq^4 + 240nq^2 - 1700np^3 + 2100np^2 - 540n^2p^4 + 360np^3 - 3300n^2q^2 - 2680n^2q^2 + 2100n^2q^2 - 540n^2q^4 + 360n^3q^3 + 240n^2p^4 - 410n^2p^2q^2 + 230n^2q^4 - 415np^2q^4 + 1340np + 620nq - 610pq + 360npq - 1080n^2p^2q^2 - 30npq^2 - 57npq^2 + 1020npq^2 + 600npq^2 + 4200n^3pq + 270npq^4 + 270npq^4 + 1380np^2q^2 - 2820n^2pq^2 - 2040n^2pq^2 + 540np^2q^3 - 1080n^2pq^3 - 1080n^2pq^2 + 1080n^2pq^2 + 185n^2p^2q + 5120n + 766p - 2094q + 8040n^2 + 3720n^3 - 345p^2 + 460p^3 + 1230p^4 + 334p^5 + 45p^6 - 2765q^2 - 635q^3 - 130q^4 - 211q^5 - 45q^6 - 4195np^2 + 1130n^2p - 4560np^3 + 5400np^3p - 425np^4 + 270np^5 - 3635nq^2 + 5620n^2q + 40nq^3 +}
We thus evaluate the various indices of the strength-weighted parameters of the quotient graphs are tabulated in Table 2 and in addition determine the strength-weighted parameters for the three types of \(\Theta \)-classes. The computed values above mentioned parameter values in the following expression,

\[
\text{NP}(\text{H}) = \sum_{i=1}^{q+1} \text{NP}(\text{H})/\text{HP}(\text{H}) + \sum_{i=1}^{p} \text{NP}(\text{H})/\text{HP}(\text{H})
\]

7. \(PI(BT_H(n, p, q)) = \frac{3}{4}\rho_{\text{ms}}(36n^2p^2 + 72n^2pq + 140n^2q^2 + 140n^2q - 36n^3p - 36n^3p - 40np^2 - 36np^2 - 16npq + 108np - 36nq^2 - 36nq + 100n + 94p - 143p + 18p^2q + 26p^2q - 5p^2 - 10pq^2 - 2pq + 42p + 9q^4 + 22q^3 - 5q^2 - 18q + 24). \)

8. \(S(BT_H(n, p, q)) = \frac{1}{10}\rho_{\text{ms}}(\gamma_m(30 + 300n + 73p - 127q + 380n^2 + 160n^3 - 5p^2 - 70p^3 - 30p^4 - 8p^5 - 235q^2 - 150q^3 - 50q^4 - 8q^5 + 10np^2 + 470n^2p - 40np^3 + 160n^3p + 20np^4 + 80np^4 + 230n^2q + 40nq^3 + 160n^3q + 20nq^4 - 240pq^2 - 120pq^3 - 40p^3q - 20pq^4 - 20p^4q + 60n^2p^2 - 40n^2p^2 + 40n^2p^2 - 60n^2p^2). \)

9. \(\text{Gut}(BT_H(n, p, q)) = \frac{1}{10}\rho_{\text{ms}}(120n^2p^2 + 240npq + 480n^2q^2 + 480n^3q + 480n^4 + 120n^2p^3 + 180n^2p^2 + 720npq + 1430n^2p - 120n^2q^3 - 180n^2q^2 + 710n^2q + 1190n^2 + 60np^4 - 120np^3 + 50np^2 + 680npq + 1350np + 60nq^4 + 120nq^3 + 50nq^2 + 630nq + 1090n - 245 - 60p^4q - 90p^4 - 120p^3q - 230p^2q - 40p^2q - 65p^2 - 60pq^4 - 360pq^2 - 760pq^2 - 440pq - 249pq - 24q^5 - 150q^4 - 470q^3 - 785q^2 - 441q + 150). \)

Proof. The cardinality of structural vertex set and the edge set of \(BT_H(n, p, q) \) is given by \(|V_\gamma(BT_H(n, p, q))| = (\gamma_m(2 + 4n + p - q - p^2 - q^2 + 2np + 2nq) + \gamma_s(6 + 6n + 3p - q - p^2 - q^2 + 2np + 2nq))/2 \) and \(|E_\rho(BT_H(n, p, q))| = 3\rho_{\text{ms}}(4n + p - q + 2np + 2nq - p^2 - q^2 + 2)/2 \) while the total number of vertices and edges in the undergraph are \(5n + 2p - q + 2np + 2nq - p^2 - q^2 + 4 \) and \(3(4n + p - q + 2np + 2nq - p^2 - q^2 + 2)/2 \) respectively.

As the \(\Theta \)-classes \(A_{+1}^{bb} \) and \(O_{+1}^{bb} \) are symmetric to each other in \(BT_H(n, p, q) \), it is sufficient to determine the strength-weighted parameters for the three types of \(\Theta \)-classes. The computed values of the strength-weighted parameters of the quotient graphs are tabulated in Table 2 and in addition that \(X_{2i}^{H}(w) = |V_\gamma(BT_H(n, p, q))| - X_{1i}^{H}(w) \) and \(X_{2i}^{H}(s) = |E_\rho(BT_H(n, p, q))| - X_{1i}^{H}(s) - X_{3i}^{H}(s)). \)

We thus evaluate the various indices \(TI \in \{W, W_e, W_{ev}, S_{zu}, S_{za}, S_{zue}, P, I, S, \text{Gut}\} \) by substituting the above mentioned parameter values in the following expression,

\[
TI(BT_H(n, p, q)) = \sum_{i=1}^{q+1} TI(BT_H(n, p, q)/H_{1i}^{H}) + \sum_{i=1}^{p} TI(BT_H(n, p, q)/H_{1i}^{H})
\]

14
\[
+ 2 \sum_{i=1}^{p} TI(BT_H(n,p,q)/A_i^{Hb}) + 2 \sum_{i=p+1}^{n-q} TI(BT_H(n,p,q)/A_i^{Hb}) \\
+ 2 \sum_{i=1}^{q} TI(BT_H(n,p,q)/A_{-i}^{Hb}) + \sum_{i=1}^{n-q+2(p+1)} TI(BT_H(n,p,q)/P_i^{Hb}).
\]

Table 2: Strength-weighted parameters of \(BT_H(n,p,q)\)

<table>
<thead>
<tr>
<th>(\Theta)-class</th>
<th>Edge-strength (X_{3i}^{Hb}(s))</th>
<th>Vertex-weight (X_{1i}^{Hb}(w))</th>
<th>Vertex-strength (X_{1i}^{Hb}(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_i^{Hb}:1 \leq i \leq q+1)</td>
<td>(\rho_{MS}(n - q + i))</td>
<td>((\gamma_s(i + 1)(i + 2n - 2q) + i\gamma_M(i + 2n - 2q - 1))/2)</td>
<td>(3i\rho_{MS}(i + 2n - 2q - 1)/2)</td>
</tr>
<tr>
<td>(H_i^{Hb}:1 \leq i \leq p)</td>
<td>(\rho_{MS}(n - p + i))</td>
<td>((i\gamma_M(i + 2n - 2p + 1) + i\gamma_s(i + 2n - 2p + 3))/2)</td>
<td>(\rho_{MS}(i - 2n + 2p + 6ni - 6ip + 3i^2)/2)</td>
</tr>
<tr>
<td>(A_i^{Hb}:1 \leq i \leq p)</td>
<td>(\rho_{MS}(q + i + 1))</td>
<td>((i\gamma_s(i + 2q + 5) + i\gamma_M(i + 2q + 3))/2)</td>
<td>(\rho_{MS}(7i - 2q + 6iq + 3i^2 - 2)/2)</td>
</tr>
<tr>
<td>(A_i^{Hb}:p + 1 \leq i \leq n - q)</td>
<td>(\rho_{MS}(p + q + 2))</td>
<td>((\gamma_s(6i - p - p^2 + 2ip + 2iq) + \gamma_M(4i - p - p^2 + 2ip + 2iq))/2)</td>
<td>(\rho_{MS}(12i - 5p - 2q + 6ip + 6iq - 3p^2 - 4)/2)</td>
</tr>
<tr>
<td>(A_i^{Hb}:1 \leq i \leq q)</td>
<td>(\rho_{MS}(p + i + 1))</td>
<td>((\gamma_s(2(p + 1) + i(i + 2p + 3)) + i\gamma_M(i + 2p + 1))/2)</td>
<td>(3i\rho_{MS}(i + 2p + 1)/2)</td>
</tr>
<tr>
<td>(P_i^{Hb}:1 \leq i \leq n - q + 2(p + 1))</td>
<td>(\rho_{MS})</td>
<td>(\gamma_s)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

It should be noted that the geometry of the bitrapezium graph structure \(BT_H(n,p,q)\) possess complications in MATLAB interface while calculating the Mostar indices. Thus we limit the evaluation of various Mostar indices to the hexagonal shape \(MS_2\) monolayer. Since \(H_H(k) = BT_H(2k - 1, k - 1, k - 1)\) and consequently, all the other indices namely \(W, W_e, W_{ev}, Sz, Sze, Sz_{ev}, PI, S, Gut\) for this structure can be obtained from Theorem 4 by replacing the values of the parameters \(n, p\) and \(q\) as \(2k - 1, k - 1\) and \(k - 1\) respectively.

Theorem 5. For hexagonal shape \(2H\) \(MS_2\) monolayer \(H_H(k)\), we have

1. \(Mo(H_H(k)) = \frac{1}{2}k\rho_{MS}\{\gamma_M(27k^3 + 3k) + \gamma_s(27k^3 + 16k^2 - 3k - 16)\}\).

2. \(Mo_c(H_H(k)) = \frac{3}{2}k\rho_{MS}^2\{27k^3 - 5k - 2\}\).
3. $Mo_t(H_H(k)) = \frac{1}{2}k\rho_{MS}\{\rho_{MS}(81k^3 - 15k - 6) + \gamma_M(27k^3 + 3k) + \gamma_s(27k^3 + 16k^2 - 3k - 16)\}.

4. $w^+Mo(H_H(k)) = \frac{1}{2}k\rho_{MS}^2\{\gamma_M(564k^4 - 405k^3 + 330k^2 - 15k + 6) + \gamma_s(564k^4 - 75k^3 - 290k^2 + 135k - 94)\}.

5. $w^+Mo_c(H_H(k)) = \frac{3}{5}k\rho_{MS}^3\{564k^4 - 405k^3 + 90k^2 + 25k - 14\}.

6. $w^+Mo_t(H_H(k)) = \frac{1}{2}k\rho_{MS}^2\{\rho_{MS}(169k^3 - 1215k^3 + 270k^2 + 75k - 42) + \gamma_M(564k^4 - 405k^3 + 330k^2 - 15k + 6) + \gamma_s(564k^4 - 75k^3 - 290k^2 + 135k - 94)\}.

7. $w^*Mo(H_H(k)) = \frac{3}{5}k\rho_{MS}^3\{\gamma_M(282k^4 - 270k^3 + 165k^2 - 15k + 3) + \gamma_s(282k^4 - 105k^3 - 185k^2 + 75k - 7)\}.

8. $w^*Mo_c(H_H(k)) = \frac{9}{5}k\rho_{MS}^3\{282k^4 - 270k^3 + 45k^2 + 25k - 2\}.

9. $w^*Mo_t(H_H(k)) = \frac{3}{5}k\rho_{MS}^3\{\rho_{MS}(846k^4 - 810k^3 + 135k^2 + 75k - 6) + \gamma_M(282k^4 - 270k^3 + 165k^2 - 15k + 3) + \gamma_s(282k^4 - 105k^3 - 185k^2 + 75k - 7)\}

Proof. Due to the symmetry of the structure $H_H(k)$, it is sufficient to estimate the edge-weight parameters for the Θ-classes H^H_I and $H^H_{\pm3I}$. We have $H^H_{3I}(w^+) = \rho_{MS}(6(k+i) - 2)$, $H^H_{3I}(w^*) = \rho_{MS}(9(k+i) - 6)$, $P^H_{3I}(w^+) = 4\rho_{MS}$ and $P^H_{3I}(w^*) = 3\rho_{MS}^2$. Thus we obtain the indices $TI \in \{Mo, Mo_c, Mo_t, w^+Mo, w^+Mo_c, w^+Mo_t, w^*Mo, w^*Mo_c, w^*Mo_t\}$ by substituting the given values in the following expression,

$$TI(H_H(k)) = 3\sum_{i=1}^{k} TI(H_H(k)/H^H_I) + 3\sum_{i=1}^{k-1} TI(H_H(k)/H^H_{-1}) + \sum_{i=1}^{3k} TI(H_H(k)/P^H_{3I}).$$

\[\square\]

Theorem 6. For parallelogram shape 2H MS2 monolayer $P_H(p,q)$, $1 \leq q \leq p$, we have

1. $W(P_H(p,q)) = \frac{1}{60}(\gamma^2_3(20p^2q^2 + 40p^3q + 20p^3 + 10p^2q^3 + 90p^2q^2 + 140p^2q + 60p^2 + 5pq^4 + 40pq^3 + 125pq^2 + 130pq + 40p - q^5 + 25q^3 + 60q^2 + 36q) + \gamma^2_5(20p^2q^2 + 80pq^2 + 10pq^2 + 180pq^2 + 530pq^2 + 480pq + 5pq^4 + 80pq^3 + 515pq^2 + 1100pq + 760p - q^5 + 85q^3 + 480q^2 + 756q + 360) + \gamma_M\gamma_s(40p^3q^2 + 120p^3q + 80pq^3 + 20pq^2q^2 + 270p^2q^2 + 610pq^2 + 360pq^2 + 10pq^4 + 120pq^3 + 580pq^2 + 930pq + 460p - 2q^5 + 90q^3 + 360q^2 + 452q + 180)\}.

2. $W_c(P_H(p,q)) = \frac{1}{20}\rho_{MS}\{q(1)\{60p^3q + 60pq^3 + 30p^2q^2 + 15pq^2 + 120pq^2 + 15pq^3 + 105pq^2 + 150pq^2 + 60p - 3q^4 + 3q^3 + 62q^2 + 58q\}\}.

3. $W_{ev}(P_H(p,q)) = \frac{1}{60}\rho_{MS}\{90p^3q + 150pq^2 + 60p^3 + 150q^2 + 70q^3 - 3q^5 + 315pq^2 + 345pq^2 + 120pq^3 + 120pq^4 + 225pq^2q^2 + 30pq^2q^3 + 60pq^3q^2 + 300pq) + \gamma_s(180 + 540p + 333q + 480pq^2 + 120pq^3 + 480pq^2 + 130q^3 - 3q^5 + 750pq^2 + 780pq^2 + 180pq^3 + 180pq^3 + 15pq^4 + 360pq^2q^2 + 30pq^2q^3 + 60pq^3q^2 + 1095pq\}\}.
4. $S_z(P_H(p, q)) = \frac{1}{60}\rho_{MS} \gamma_M(30p^3q^3 + 90p^4q^2 + 80p^3q^2 + 20p^3q + 90p^2q^3 + 270p^2q^2 + 240pq^2 + 60p^2 + 70pq^3 + 210pq^2 + 180pq + 40p + 5q^4 + 30q^3 + 30q^2 + 30q) + \gamma_S(30p^3q^3 + 160p^3q^2 + 210p^3q + 80p^3 + 170p^2q^3 + 810p^2q^2 + 1060p^2q + 480p^2 - 5pq^4 + 200pq^3 + 1045pq^2 + 1540pq + 760p + q^5 + 5q^4 + 85q^3 + 475q^2 + 754q + 360) + \gamma_M\gamma_S(60p^3q^3 + 250p^2q^2 + 270pq^3 + 80pq^2 + 260pq^2q + 990pq^2 + 1090pq + 360p^2 - 5pq^4 + 250pq^3 + 1045pq^2 + 1250pq + 460p + q^5 + 10q^4 + 95q^3 + 350q^2 + 444q + 180))$.

5. $S_{ze}(P_H(p, q)) = \frac{1}{72}\rho_{MS}(q + 1)^2(p + 1)\{9p^2q + 6p^2 + 12pq + 6p + q^2 + 5q\}$.

6. $S_{zev}(P_H(p, q)) = \frac{1}{120}\rho_{MS}(180p + 140q + 300p^2 + 120p^3 + 275q^2 + 160q^3 + 25q^4 + 1040pq^2 + 1170pq^2 + 400pq^3 + 450pq^3 + 10pq^4 + 1350pq^2 + 480pq^3 + 510pq^3 + 180pq^3 + 830pq) + \gamma_S(360 + 1080p + 1032q + 960p^2 + 240p^3 + 925q^2 + 285q^3 + 35q^4 + 2525pq^2 + 2670p^2q + 650pq^3 + 720p^3q - 5pq^4 + 2610p^2q^2 + 720pq^3 + 720pq^3q + 180pq^2 + 2830pq)$.

7. $PI(P_H(p, q)) = \frac{1}{27}\rho_{MS}(27p^2q^2 + 51pq^2 + 27pq^2 + 48pq^2 + 90pq + 45p + q^3 + 27q^2 + 44q + 18)$.

8. $S(P_H(p, q)) = \frac{1}{18}\rho_{MS}(\gamma_M(45 + 180p + 173q + 195q^2 + 195q^3 + 70q^3 - 3q^5 + 405pq^2 + 45pq^2 + 60pq + 60pq + 70pq + 30pq + 15pq^4 + 270pq^2 + 30pq^3 + 60pq^3 + 480pq) + \gamma_S(315 + 765p + 758q + 570q^2 + 120p^3 + 570q^2 + 130q^3 - 3q^5 + 885pq^2 + 915pq^2 + 180pq^3 + 180pq^3 + 15pq^4 + 405pq^3 + 30pq^3 + 60pq^3q + 145pq^3))$.

9. $Gut(P_H(p, q)) = \frac{1}{18}\rho_{MS}(180pq^3 + 360pq^3 + 180pq^3 + 90pq^3 + 810pq^3 + 630pq^2 + 45pq^2 + 360pq^2 + 1275pq^2 + 1620pq + 675 - 9q^5 + 200q^3 + 630q^2 + 664q + 225)$.

10. $Mo(P_H(p, q)) = \frac{1}{27}\rho_{MS}(\gamma_M(54 + 84p + 96q + 42p^2 + 48q^2 + 72pq^2 + 72pq^2 + 36pq^2 + 144pq + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^{p+q}(q + 1)^2) + \gamma_S(72 + 174p + 176q + 102p^2 + 108pq^2 + 4q^3 + 84pq^2 + 96pq^2 + 36pq^2 + 216pq - 6(-1)^p(q + 1) - 6(-1)^q(p + 1) + 6(-1)^{p+q}(q + 1))$.

11. $Mo_{OC}(P_H(p, q)) = \frac{1}{8}\rho_{MS}(84p + 88q + 144pq + 72pq^2 + 72pq^2 + 46pq^2 + 48pq^2 + 36pq^2 + 42 + 2(-1)^p(q + 1)^2 + 2(-1)^q(p + 1)^2 + 2(-1)^{p+q}(q + 1)^2)$.

12. $Mo_{OC}(P_H(p, q)) = \frac{1}{27}\rho_{MS}(126 + 252p + 264q + 138p^2 + 144pq + 216pq^2 + 216pq^2 + 108pq^2 + 342pq + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^{p+q}(q + 1)^2) + \gamma_M(54 + 84p + 96q + 42p^2 + 48q^2 + 72pq^2 + 72pq^2 + 36pq^2 + 144pq + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^{p+q}(q + 1)^2) + \gamma_S(72 + 174p + 176q + 102pq^2 + 108pq^2 + 4q^3 + 84pq^2 + 96pq^2 + 36pq^2 + 216pq - 6(-1)^p(q + 1) - 6(-1)^q(p + 1) + 6(-1)^{p+q}(q + 1))$.

13. $w^+ Mo(P_H(p, q)) = \frac{1}{180}\rho_{MS}(\gamma_M(990 + 1440p + 180q^2 + 570pq^2 + 180pq^2 + 960q^2 + 40q^3 + 120q^4 + 72q^5 + 2160pq^2 + 240pq^2 - 240pq^2 - 240pq^2 + 3060pq^2 + 720pq^2 + 360pq^2 + 3120pq + 30(-1)^p(6q + 5)(q + 1)^2 + 30(-1)^q(6p + 5)(p + 1)^2 + 30(-1)^{p+q}(6q + 5)(q + 1)^2) + \gamma_S(1440 + 3510p + 3568q + 2490q^2 + 180pq^2 + 2700q^2 + 620q^2 + 240q^2 + 72q^5 + 2820pq^2 + 3720pq^2 - 480pq^2 - 240pq^4 + 4140pq^2 + 720pq^2 + 360pq^2 + 4800pq - 30(-1)^p(6q + 5)(q + 1) - 30(-1)^q(6p + 5)(p + 1) + 30(-1)^{p+q}(6q + 5)(q + 1))$.
14. \[w^+ Mo_c(P_H(p, q)) = \frac{1}{120} \rho^3_{MS}(4800p + 5224q + 9360pq + 6480q^2 + 7200p^2q - 720pq^3 - 720pq^4 + 2730p^2 - 180p^3 + 3120q^2 + 200q^3 + 360q^4 + 216q^5 + 9180p^2q^3 + 2160pq^2q^3 + 1080p^3q^2 + 2430 + 30(1)(6q + 5)(q + 1)^2 + 30(1)^9(6p + 5)(p + 1)^2 + 30(1)^{p+q}(6q + 5)(q + 1)^2). \]

15. \[w^+ Mo_1(P_H(p, q)) = \frac{1}{120} \rho^2_{MS}(30(990 + 1440p + 1808q + 570p^2 - 180p^3 + 960q^2 + 40q^3 + 120q^4 + 72q^5 + 2160pq^2 + 2400pq^2 - 240pq^3 - 240pq^4 + 720q^3p^2 + 360pq^2q^3 + 360pq^2q^3 + 3120pq^2 + 30(1)^0(5)(6q + 5)(q + 1)^2 + 30(1)^{p+q}(6q + 5)(q + 1)^2 + 30(1)^9(6p + 5)(p + 1)^2 + 30(1)^{p+q}(6q + 5)(q + 1)^2 + 30(1)^9(6p + 5)(p + 1)^2 + 30(1)^{p+q}(6q + 5)(q + 1)^2 + 30(1)^9(6p + 5)(p + 1)^2 + 30(1)^{p+q}(6q + 5)(q + 1)^2) + \gamma_s(1440 + 3510p + 3568q + 2490pq + 180p^3 + 2700pq + 620q^2 + 240q^4 + 72q^5 + 280pq^2 + 3720p^2q - 480pq^3 - 240pq^4 + 4140pq^2 + 720pq^2q^3 + 360p^3q^2 + 480pq^2 - 30(1)^{p+q}(6q + 5)(q + 1) + 30(1)^{p+q}(6p + 5)(p + 1) + 30(1)^{p+q}(6q + 5)(q + 1)). \]

16. \[w^* Mo(P_H(p, q)) = \frac{1}{30} \rho^2_{MS}(\gamma_s(180 + 270p + 404q + 120p^2 - 90p^3 + 300q^2 + 60q^3 + 36q^4 + 40q^5 + 780pq^2 + 960pq^2 - 120pq^3 - 120pq^4 + 440pq^2 + 360pq^2q^3 + 180pq^2q^3 + 840pq + 30(1)^{p}(3q + 2)(q + 1)^2 + 30(1)^{p+q}(3q + 2)(q + 1)^2). \]

17. \[w^* Mo_c(P_H(p, q)) = \frac{1}{30} \rho^2_{MS}(1110p + 1372q + 2520pq + 2340pq^2 + 2880pq^2 - 360pq^3 - 360pq^4 + 840pq^2 - 90p^3 + 1140q^2 + 200q^3 + 180q^4 + 108q^5 - 360pq^3 + 360pq^4 + 4320pq^2q^3 + 1080pq^2q^3 + 540pq^2q^3 + 540 + 30(1)^{p}(3q + 2)(q + 1)^2 + 30(1)^{q}(3p + 2)(p + 1)^2 + 30(1)^{p+q}(3q + 2)(q + 1)^2). \]

18. \[w^* Mo_1(P_H(p, q)) = \frac{1}{30} \rho^2_{MS}(\rho_{MS}(340 + 1110p + 1372q + 840p^2 - 90p^3 + 1140q^2 + 200q^3 + 180q^4 + 108q^5 - 360pq^3 - 360pq^4 + 4320pq^2q^3 + 1080pq^2q^3 + 540pq^2q^3 + 2520pq + 2340pq^2 + 2880pq^2 + 30(1)^{p}(3q + 2)(q + 1)^2 + 30(1)^{p+q}(3q + 2)(q + 1)^2 + 30(1)^{q}(3p + 2)(p + 1)^2 + 30(1)^{p+q}(3q + 2)(q + 1)^2). \]

Proof. The monolayer \(P_H(p, q) \) contains \(3(p + q) + 2(pq + 2) \) number of vertices and \(3(p + 1)(q + 1) \) number of edges with \(|V_c(P_H(p, q))| = \gamma_s(1 + p + q + pq) + \gamma_s(3 + 2p + 2q + pq) \) and \(|E_P(P_H(p, q))| = 3\rho_{MS}(p + 1)(q + 1) \). The strength-weighted parameters of the various quotient graphs corresponding to the \(\Theta \)-classes of \(P_H(p, q) \) are tabulated in Table 3. Obviously, \(X^{HP}_{2i}(w) = |V_c(P_H(p, q))| - X^{HP}_{1i}(w) \) and \(X^{HP}_{2i}(s) = |E_P(P_H(p, q))| - X^{HP}_{1i}(s) - X^{HP}_{3i}(s) \).
Table 3: Strength-weighted parameters of the quotient graphs $P_H(p,q)/X_{ki}^{HP}$, $X \in \{H,O,A,P\}$

<table>
<thead>
<tr>
<th>Θ-class</th>
<th>Vertex parameters (w_v, s_v)</th>
<th>Edge parameters ($w^+_v/w'_v, s_e$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_i^{HP}: 1 \leq i \leq q$</td>
<td>$H_i^{HP}(w) = i\gamma_s(2 + p) + i\gamma_M(1 + p)$</td>
<td>$H_i^{HP}(s) = \rho_{MS}(p + 1)$</td>
</tr>
<tr>
<td></td>
<td>$H_i^{HP}(s) = \rho_{MS}(3i - 1)(p + 1)$</td>
<td>$H_i^{HP}(w^+) = \rho_{MS}(6p + 5)$</td>
</tr>
<tr>
<td>$O_i^{HP}: 1 \leq i \leq p$</td>
<td>$O_i^{HP}(w) = \gamma_s(2i + q + iq + 1)$</td>
<td>$O_i^{HP}(s) = \rho_{MS}(q + 1)$</td>
</tr>
<tr>
<td></td>
<td>$O_i^{HP}(s) = 3i\rho_{MS}(q + 1)$</td>
<td>$O_i^{HP}(w^+) = \rho_{MS}(6q + 5)$</td>
</tr>
<tr>
<td>$A_i^{HP}: 1 \leq i \leq q$</td>
<td>$A_i^{HP}(w) = i(\gamma_M(1 + i) + \gamma_s(3 + i))/2$</td>
<td>$A_i^{HP}(s) = i\rho_{MS}$</td>
</tr>
<tr>
<td></td>
<td>$A_i^{HP}(s) = i\rho_{MS}(3i + 1)/2$</td>
<td>$A_i^{HP}(w^+) = 6i\rho_{MS}$</td>
</tr>
<tr>
<td>$A_i^{HP}: q + 1 \leq i \leq p$</td>
<td>$A_i^{HP}(w) = (\gamma_M(2i - q - q^2 + 2iq)) / 2$</td>
<td>$A_i^{HP}(s) = \rho_{MS}(q + 1)$</td>
</tr>
<tr>
<td></td>
<td>$A_i^{HP}(s) = \rho_{MS}(q + 1)$</td>
<td>$A_i^{HP}(w^+) = \rho_{MS}(6q + 5)$</td>
</tr>
<tr>
<td>$A_{-i}^{HP}: 1 \leq i \leq q$</td>
<td>$A_{-i}^{HP}(w) = (i + 1)(i\gamma_M + (i + 2)\gamma_s)/2$</td>
<td>$A_{-i}^{HP}(s) = \rho_{MS}(i + 1)$</td>
</tr>
<tr>
<td></td>
<td>$A_{-i}^{HP}(s) = 3i\rho_{MS}(i + 1)/2$</td>
<td>$A_{-i}^{HP}(w^+) = \rho_{MS}(6i + 4)$</td>
</tr>
<tr>
<td>$P_{i}^{HP}: 1 \leq i \leq p + q + 3$</td>
<td>$P_{i}^{HP}(w) = \gamma_s$</td>
<td>$P_{i}^{HP}(s) = \rho_{MS}$</td>
</tr>
<tr>
<td></td>
<td>$P_{i}^{HP}(s) = 0$</td>
<td>$P_{i}^{HP}(w^+) = 4\rho_{MS}$</td>
</tr>
</tbody>
</table>

We therefore derive the indices $TI \in \{W,W_e,W_{ev},S_zv,S_z,e,S_{zev},P_1,S,Gut,Mo,Mo_e,Mo_t,w^+Mo,w^+Mo_e,w^+Mo_t,w^+Mo_{ev},w^+Mo_{ev},w^+Mo_{t}\}$ through the expression

$$TI(P_H(p,q)) = \sum_{i=1}^{q} TI(P_H(p,q)/H_i^{HP}) + \sum_{i=1}^{p} TI(P_H(p,q)/O_i^{HP}) + \sum_{i=1}^{q} TI(P_H(p,q)/A_i^{HP}) + \sum_{i=q+1}^{p} TI(P_H(p,q)/A_{-i}^{HP}) + \sum_{i=1}^{p+q+3} TI(P_H(p,q)/P_{i}^{HP}).$$

\[\square\]

3.3 1T MS$_2$ monolayers

In this phase of MS$_2$ monolayers, the metal atom M is co-ordinated to six adjoining S atoms octahedrally, with the two S layers being stacked in the A–B packing mode. It is also claimed to exhibit
Theorem 7. For bitrapezium shape 1T MS₂ monolayers as \(BT_T(n, p, q) \), \(H_T(k) \) and \(P_T(p, q) \) respectively with various \(\Theta \)-classes \(X_{\pm}^T \), \(X \in \{ H, A, O, P \} \) as in the previous section. We now inspect the characterization of these polytypes [58,59] shown in Figure 7 as follows.

![Figure 7: Structure of 1T MS₂ monolayers (a) \(BT_T(8, 3, 4) \) (b) \(P_T(6, 5) \)](image)

Theorem 7. For bitrapezium shape 1T MS₂ monolayer \(BT_T(n, p, q) \), \(p + q < n \), we have

1. \(W(BT_T(n, p, q)) = \frac{1}{60} \left\{ \frac{1}{3} \left(\frac{1}{2} (20n^3p^2 + 40n^3pq + 80n^3p + 20n^3q^2 + 80n^3q + 80n^3 - 20n^2p^3 + 30n^2p^2 + 120pq^3 + 230n^2p - 20n^2q^3 - 30n^2q^2 + 110n^2q + 180n^2 + 10np^4 - 20np^3 + 80npq + 150np + 10nq^4 + 20nq^3 + 50nq + 100n - 4p^5 - 10p^4q - 15p^4 - 20p^3q - 30p^3 + 10p^2q + 15p^2 - 10pq^4 - 60pq^3 - 110pq^2 - 40pq + 34p + 50q + 104q^4 - 70q^3 - 95q^2 - 46q) + \gamma_5^2 (80n^3p^2 + 160n^3pq + 480n^3p + 80n^3q^2 + 480n^3q + 720n^3 - 80n^2p^3 + 240n^2p^2 + 960n^2pq + 2660n^2p - 80n^2q^3 + 1940n^2q + 3780n^2 + 40np^4 - 160np^3 + 180np^2 + 1760np + 4480np + 40nq^4 - 60nq^2 + 2760nq + 6060n - 16p^5 - 40p^4q - 80p^4 - 440p^3q - 140p^2q - 100p^2 - 40pq^4 - 320pq^3 - 860pq^2 + 120pq + 2316p - 16q^5 - 120q^4 - 600q^3 - 1200q^2 + 616q + 3120) + \gamma_5^2 \gamma_6 (80n^3p^2 + 160n^3pq + 480n^3p + 80n^3q^2 + 40n^3q + 480n^3 - 80n^2p^3 + 180n^2p^2 + 720n^2pq + 1700n^2p - 80n^2q^3 - 60n^2q^2 + 1100n^2q + 1800n^2 + 40n^3 - 120n^3p + 60np^2 + 920npq + 2060np + 40nq^4 + 40nq^3 - 60nq^2 + 1060nq + 2040n - 16p^5 - 40p^4q - 70p^4 - 120p^3q - 270p^3 - 50p^2q - 110p^2 - 40pq^4 - 280pq^3 - 650pq^2 - 200pq + 646p - 16q^5 - 110q^4 - 430q^3 - 850q^2 - 334q + 540) \right\} \right) \right\}

2. \(W_e(BT_T(n, p, q)) = \frac{1}{M_{\text{MS}}} \left\{ 120n^3p^2 + 240n^3pq + 480n^3p + 120n^3q^2 + 480n^3q + 480n^3 - 120n^2p^3 + 360n^2pq + 730n^2p - 120n^2q^3 - 360n^2q^2 + 10n^2q + 490n^2 + 60np^4 + 60np^3 + 180np^2q + 250np^2 + 180npq^2 + 760npq + 820np + 60nq^4 + 300nq^3 + 610nq^2 + 800nq + 570n - 24p^5 - 60p^4q - 135p^4 - \right\}

20
\[120p^3q - 160p^3 - 90p^3q^2 - 170p^2q - 35pq^4 - 360pq^3 - 710pq^2 - 430pq + 34p - 24q^5 - 195q^4 - 580q^3 - 765q^2 - 396q - 40\].

3. \(W_{ee}(BT_T(n, p, q)) = \frac{1}{30}\rho_{mm}\{\gamma_m(360n + 86p - 194q + 520n^2 + 320n^3 + 35p^2 - 110p^3 - 75p^4 - 16p^5 - 425q^2 - 330q^3 - 115q^4 - 16q^5 - 80np^2 + 700n^2p - 20np^3 + 320n^3p + 40np^4 + 200np^5 + 220n^2q + 140nq^5 + 320n^3q + 40nq^5 - 450pq^2 - 30pq^4 - 240pq^3 - 80p^3q - 40pq^4 - 40q^4 - 60n^2p^2 - 80n^2p^3 + 80n^3p^2 - 80n^2q^2 + 80n^3q^2 - 30pq^2 - 540np + 340nq - 210pq + 400npq + 60npq^2 + 60npq^3 + 360n^2pq + 160n^3pq\} + \gamma_s(980 + 3520n + 1062p - 518q + 3000n^2 + 960n^3 - 150p^3 - 490p^4 - 170p^5 - 32p^5 - 1610q^2 - 930q^4 - 250q^5 - 32q^5 - 280np^2 + 2840n^2p - 120np^3 + 800n^3p + 80np^4 + 280nq^2 + 1640n^2q + 200nq^3 + 800n^3q + 80nq^4 - 1290pq^2 - 210pq^3 - 560pq^4 - 240pq^5 - 80pq^6 - 80p^2q + 240n^2p^2 - 160n^2p^3 + 160n^2p^4 - 240n^2q^2 - 160n^2q^3 + 160n^3q^2 - 60n^3q^2 + 360np + 2120nq - 500pq + 1880npq + 120npq^2 + 120np^2q + 320n^3pq\}.

4. \(S_{ee}(BT_T(n, p, q)) = \frac{1}{120}\rho_{mm}\{\gamma_m^2(120n^2p^3 + 360n^3p^2q + 720n^3pq^2 + 1440n^3pq^2 + 1400n^3p + 120n^3q^3 + 720n^3q^4 + 1400n^3q^5 + 880n^3 - 180n^2p - 360n^2p^3q - 540n^2q^3 - 360n^2p^2q^2 - 540n^2p^2q + 420n^2p^2 - 360n^2p^3q - 900n^2pq^2 + 720n^2p^2 + 2100n^2p - 180n^2q - 900n^2q^3 - 1020n^2q^4 + 780n^2q + 1320n^2q^5 + 90n^2p^4q + 180n^2pq^2 - 750n^2q^3 + 180npq^2 + 360npq^2 - 330npq^2 - 600npq^2 + 90npq^4 - 1050npq^2 - 1320npq + 100npq + 90n^2q^5 + 360n^2p^4q - 360n^2p^4q - 1440n^2q^2 - 1440n^2q^4 - 40n - 15p^6 + 45p^5 - 45p^4q^2 - 115p^4 + 90p^4q^2 + 250p^4q + 95p^3 - 45p^3q^4 - 90p^3q^4 + 330p^3q^4 + 855p^3q + 380p^3q + 45pq^4 + 250pq^4 + 585pq^4 + 700pq^4 + 340p - 15q^6 - 45q^6 + 115q^4 + 545q^3 + 620q^2 + 220q) + \gamma_s^2(480n^3p^3 + 1400n^3p^5 + 1440n^3pq^2 + 1400n^3pq^2 + 800n^3pq^2 + 10160n^3p + 480n^3q^2 + 400n^3q^2 + 10160n^3q + 7920n^3 - 720n^2p^4 - 1440n^2p^2q - 2560n^2p^3 - 1440n^2p^2q^2 - 1440n^2p^2q^2 + 7560n^2p^2 - 1440n^2p^3q^2 - 2880n^2pq^2 + 16320n^2pq + 33040n^2p - 720n^2q^4 - 400n^2q^3 - 120n^2q^2 + 24160n^2q + 27720n^2 + 360np^5 + 360np^4q - 520np^4 - 720np^4q - 1440np^3q^2 - 920np^3q^2 + 720np^2q^2 - 600npq^2 - 600npq^2 + 360npq^2 - 1440npq^2 - 11760npq^2 - 4640npq^2 + 20520npq + 360npq^3 + 920npq^4 - 6960npq^4 - 2280npq^4 - 7640npq + 16680n + 60p^6 + 424p^5 - 180p^4q^2 + 160p^4q + 1680p^4q + 720p^3q + 1280p^3q - 2080p^3 - 180p^2q^4 + 3840p^2q^2 + 5600p^2q - 1020p^2q + 520pq^4 + 1920pq^2 + 1280pq^2 + 2560pq + 6816p - 60p^6 + 64q^5 + 2560q^4 + 5760q^6 + 500q^2 - 2584q + 3840) + \gamma_m\gamma_s(480n^3p^3 + 1440n^3p^5 + 3440n^3p^2q + 1400n^3pq^2 + 6880n^3pq + 7600np + 480n^3q^3 + 3440n^3q^2 + 7600n^3q + 5280n^3 - 720n^2p^4 - 1440n^2p^3q - 2360n^2p^3 - 1440np^2q^2 - 1800np^2q^2 + 4320np^2q^2 - 1440np^2q^2 - 3240np^2q^2 + 8880npq^2 + 18200np^2 - 720np^2q - 3800np^2q^2 - 2400np^2q^2 + 11240np^2q^2 + 13200np^2 + 360np^3q^2 - 260np^3q^2 + 720np^3q^2 - 720np^3q^2 - 5840np^3 + 720np^3q^2 + 1080np^2q^2 - 360np^2q^2 - 4260np^2 + 360np^4q - 720np^3q^2 - 7920np^2q - 6760npq + 5920np + 360np^5 + 1180npq^4 - 3280npq^4 - 13620npq^2 - 8640npq + 3600n - 60p^6 + 302p^5 - 180p^4q^2 - 10pq^4 + 1030p^4 + 540p^3q^2 + 1160p^3q - 430p^3 - 180p^2q^4 - 180p^2q^4 + 2580p^2q^2 + 4870p^2q + 1070p^2 + 350pq^4 + 1480pq^2 + 2230pq^2 + 2820pq + 2768p - 60q^6 - 58q^5 - 1470q^4 + 4210q^4 + 2910q^3 + 48q^6 + 600)\}.

21
5. $S_{ze}(BT_T(n, p, q)) = \frac{1}{2} \rho_{ms}^3 \{72n^3p^3 + 216n^3p^2q + 408n^3p^2 + 216n^3pq^2 + 816n^3pq + 772n^3p + 72n^3q^3 + 408n^3q^2 + 772n^3q + 484n^3 - 108n^2p^4 - 216n^2p^3q - 336n^2p^3 - 216n^2p^2q^2 - 432n^2p^2q - 42n^2p^2 - 216n^2pq^3 - 648n^2pq^2 - 168n^2pq + 564n^2p - 108n^2q^4 - 552n^2q^3 - 834n^2q^2 - 144n^2q + 342n^2 + 54np^5 + 54np^4q + 36np^4 + 108np^3q + 150np^3 + 108np^2q^2 + 336np^2q + 246np^2q + 54npq^4 + 120npq^3 - 66npq^2 - 120npq + 166np + 54nq^5 + 252nq^4 + 306nq^3 - 72nq^2 - 170nq + 66n - 9p^6 + 15p^5 - 27p^4q^2 - 51p^3q + 2p^2 + 18p^3q^2 + 50pq^3 + 17p^3 - 27p^2q^4 - 90p^2q^3 - 12p^2q^2 + 195pq^2 + 125p^2 + 3pq^4 + 26pq^3 + 117pq^2 + 214pq + 130p - 9q^6 - 39q^5 - 34q^4 + 59q^3 + 107q^2 + 52q + 8\}.

6. $S_{zev}(BT_T(n, p, q)) = \frac{1}{20} \rho_{ms}^2 \{\gamma_M(40 - 20n + 320p + 240q + 940n^2 + 840n + 350p^2 + 85p^3 + 65p^4 + 35p^5 - 15p^6 + 480q^2 + 355q^3 + 35q^4 - 55q^5 - 15q^6 - 330np + 1510n^2p - 510np^3 + 1340n^3p + 30np^4 + 90np^5 - 820np^2 + 270nq^2 + 230nq^3 + 1340nq^3 + 390q^4 + 90q^5 + 450pq^2 + 650pq^2 + 160pq^3 - 180q^2 + 25pq - 65p^4 + 180n^2p^3 - 500n^2p^2 - 700n^2p^2 - 120n^2p^3 - 1200n^2q^2 - 910n^2q^2 + 700n^3q^2 - 180n^2q^4 + 120n^3q^3 + 175p^3q^2 - 120p^3q^2 - 60p^3q^2 - 45p^3q^2 - 45pq^4 + 10np - 890np + 615pq - 840npq - 360n^2p^2q^2 - 600npq^2 - 20npq^2 + 220npq^2 + 100npq^3 + 100npq^3 + 1400n^3pq + 90npq^4 + 90npq^5 + 460npq^2 - 900n^2pq^2 - 630n^2pq^2 - 180npq^2 - 180npq^2 - 360n^2pq^2 - 360n^2pq^2 + 360n^3pq^2 + 360n^3pq^2 + \gamma_S(610 + 1120n + 1459p + 859q + 5380n^2 + 2520n^3 + 935p^2 - 60p^3 + 435p^3 + 131p^4 - 30p^5 + 1855p^4 + 1920p^3q + 595p^4 - 49q^5 - 30p^6 - 1660np^3 + 7400np^2p - 2420np^3 + 3640n^3p - 70np^4 + 180np^5 - 5560np^2q - 4160n^2q - 1100nq^3 + 3640n^2q + 650nq^4 + 108nq^5 + 1190pq^2 + 2350p^2 + 620pq^3 + 700p^3q + 35pq^4 - 45pq^4 + 1620n^2p^2 - 1200n^2p^3 + 1680n^3p^2 - 360n^2p^4 + 240n^3p^3 - 1620n^2q^2 + 1920n^2q^3 + 1680n^3q^2 - 360n^2q^4 + 240n^3q^3 + 1060p^2q^2 - 150p^2q^2 + 210p^2q^2 - 90p^2q^2 - 90p^2q^2 + 1970np - 3970nq + 1700pq - 2920npq - 720n^2p^3 - 3080npq^2 - 1120npq^2 + 3240n^4pq - 160npq^3 + 3360n^3pq + 180npq^4 + 180npq^4 + 740npq^2 - 1800npq^2 + 1080n^2p^2q + 360np^4q^2 + 360np^3q^2 - 720n^2p^2q^2 + 720n^3p^2q + 720n^3p^2q\}.$

7. $PI(BT_T(n, p, q)) = \rho_{ms}^2 \{36n^2p^2 + 72n^2pq + 140n^2p + 36n^2q^2 + 140n^2q + 140n^2 - 36np^2 - 36np^2q - 16npq + 104np - 36n^2q^2 - 112nq^2 - 32nq + 106n + 9p^4 - 14p^3 + 18p^2q^2 + 26p^2q - 7p^2 - 10pq^2 - 2pq + 40p + 9q^4 + 22q^3 - 3q^2 - 4q + 42\}.$

8. $S(BT_T(n, p, q)) = \frac{1}{2} \rho_{ms}^3 \{\gamma_M(30 + 300n + 73p - 127q + 380n^2 + 160n^3 - 5p^2 - 70p^3 - 30p^4 - 8p^5 - 235q^3 - 150q^5 - 50q^4 - 8q^3 + 10np^2 + 470n^2p - 40np^3 + 160n^3p + 20np^4 + 10nq^2 + 230n^2q + 40nq^3 + 160n^3q + 20nq^4 - 240pq^2 - 120pq^3 - 40pq^3 - 20pq^4 - 20pq^4 + 60n^2p^2 - 40n^3p^2 + 40n^3p^2 - 60n^2q^2 - 40n^3q^2 + 40n^3q^2 - 39np + 170nq - 120pq + 200npq + 240npq^2 + 80n^3pq\} + \gamma_S(700 + 2360n + 696p - 364q + 1860n^2 + 480n^3 - 180p^2 - 290p^3 - 70p^4 - 16p^5 - 940q^2 - 450q^3 - 110q^4 - 16q^4 + 80np^2 + 1720n^2p - 120np^3 + 400np^2 + 40np^4 - 40np^4 + 1120n^2q + 40nq^3 + 40nq^4 - 690pq^2 - 90p^2q - 280pq^2 - 120p^2q^3 - 40pq^4 - 40pq^3 + 180n^2p^2 - 80n^3p^2 + 80n^3p^2 - 60n^2q^2 - 80n^2q^3 + 80n^3q^2 - 2280np + 1240nq - 280pq + 1000npq + 720n^2p^2q + 16n^3pq^3\}.$
9. $\text{Gut}(BT_T(n, p, q)) = \frac{2}{5}\rho_{MS}\{120n^3p^2 + 240n^3pq + 480n^3p + 120n^3q^2 + 480n^3q + 480n^3 - 120n^2p^3 + 180n^2p^2 + 720n^2pq + 1440n^2p - 120n^2q^3 - 180n^2q^2 + 720n^2qq + 1200n^2 + 60npq - 120npq + 60npq + 720npq + 1440np + 60npq + 120npq + 720npq + 1440npq + 60npq^2 + 720npq + 1195n - 24p^5 - 60p^4q - 90p^4q - 120p^3q - 240p^3q - 60p^2q - 120p^2q - 360p^2q^2 - 780p^2q^2 - 480pq + 224pq - 24q^5 - 150q^4 - 480q^3 - 840q^2 - 496q + 155\}.$

Table 4: Strength-weighted parameters of $BT_T(n, p, q)/X_i^{Tb}$, $X \in \{H, O, A, P\}$

<table>
<thead>
<tr>
<th>Θ-class</th>
<th>Edge-strength $X_{2i}^{Tb}(s)$</th>
<th>Vertex weight $X_{1i}^{Tb}(w)$</th>
<th>Vertex strength $X_{1i}^{Tb}(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_i^{Tb}; 1 \leq i \leq q + 1$</td>
<td>$\rho_{MS}(2i + 2n - 2q - 1)$</td>
<td>$(\gamma_S(2i + 2n - 2q + 2i^2 + 4ni - 4iq) + \gamma_M(i^2 - i + 2ni - 2iq))/2$</td>
<td>$\rho_{MS}(q - n - 4i + 6ni - 6iq + 3i^2 + 1)$</td>
</tr>
<tr>
<td>$H_{-i}^{Tb}; 1 \leq i \leq p$</td>
<td>$\rho_{MS}(2i + 2n - 2p + 1)$</td>
<td>$(\gamma_S(2 + 6i + 2n - 2p + 2i^2 + 4ni - 4ip) + \gamma_M(i + ip + 2ni - 2ip))/2$</td>
<td>$\rho_{MS}(2i - n + p + 6ni - 6ip + 3i^2)$</td>
</tr>
<tr>
<td>$A_i^{Tb}; 1 \leq i \leq p$</td>
<td>$\rho_{MS}(2i + 2q + 3)$</td>
<td>$(\gamma_S(4 + 10i + 2q + 2i^2 + 4iq) + \gamma_M(3i + i^2 + 2iq))/2$</td>
<td>$\rho_{MS}(8i - q + 6iq + 3i^2 - 1)$</td>
</tr>
<tr>
<td>$A_i^{Tb}; p + 1 \leq i \leq n - q - 1$</td>
<td>$2\rho_{MS}(p + q + 2)$</td>
<td>$(\gamma_S(4 + 12i - 2p + 2q - 2p^2 + 4ip + 4iq) + \gamma_M(4i - p - p^2 + 2ip + 2iq))/2$</td>
<td>$\rho_{MS}(12i - 4p - q + 6ip + 6iq - 3p^2 - 2)$</td>
</tr>
<tr>
<td>$A_{-i}^{Tb}; 1 \leq i \leq q + 1$</td>
<td>$\rho_{MS}(2i + 2p + 1)$</td>
<td>$\gamma_S(p + 1 + i(2i + 2p + 3) + ip) + \gamma_M(i + 2p + 1)/2$</td>
<td>$\rho_{MS}(2i - p + 6ip + 3i^2)$</td>
</tr>
<tr>
<td>$P_i^{Tb}; 1 \leq i \leq 2n + p + q + 7$</td>
<td>ρ_{MS}</td>
<td>γ_S</td>
<td>0</td>
</tr>
</tbody>
</table>

Proof. The cardinality of the structural vertex and edge sets of $BT_T(n, p, q)$ are given as $|V_s(BT_T(n, p, q))| = (\gamma_M(2 + 4n + p - q - p^2 - q^2 - 2np + 2nq) + \gamma_S(14 + 12n + 4p - 2p^2 - 2q^2 + 4np + 4nq))/2$ and $|E_p(BT_T(n, p, q))| = 3\rho_{MS}(4n + p - q + 2np + 2nq - p^2 - q^2 + 2) + 16)$ and which contains $16n + 5p - q + 6np + 6nq - 3p^2 - 3q^2 + 16)/2$ vertices and $3(4n + p - q + 2np + 2nq - p^2 - q^2 + 2)$ edges in the underlying graph.

The strength-weighted parameters of the quotient graphs for various Θ-partitions are listed in Table 4 with $X_{2i}^{Tb}(w) = |V_s(BT_T(n, p, q))| - X_{1i}^{Tb}(w)$ and $X_{2i}^{Tb}(s) = |E_p(BT_T(n, p, q))| - X_{1i}^{Tb}(s) - X_{3i}^{Tb}(s)$. Thus we now compute the various indices $TI \in \{W, W_e, W_{ve}, S_z, S_{z_e}, S_{zev}, P, S, Gut\}$ using the expression,

$$TI(BT_T(n, p, q)) = \sum_{i=1}^{q+1} TI(BT_T(n, p, q)/H_i^{Tb}) + \sum_{i=1}^p TI(BT_T(n, p, q)/H_{-i}^{Tb})$$

23
Theorem 8. For \(p + q = n \), let \(BT_T(n, p, q) = BT_T(n, p) \) be a 1T MS\(_2\) monolayer. Then

1. \(W(BT_T(n, p)) = \frac{1}{16} \rho_{MS} \{ 36n^5 + 180n^4p + 225n^4 + 780n^3p + 520n^3 - 360n^2p^2 - 180n^2p^2 + 1290n^2p + 525n^2 + 180n^4p - 480n^3p - 390n^2p + 1120n^2p + 174n + 60p^3 - 120p^3 - 370p^3 + 430p - 20 \} \)

2. \(W_e(BT_T(n, p)) = \frac{1}{70} \rho_{MS} \{ 166n^5 + 280p + 435n^2 + 410n^3 + 165n^4 + 24a^5 - 180p^2 - 200p^3 + 100p^4 - 240n^2p + 400n^3p + 480n^3p + 120n^4p - 120n^2p^2 - 240n^2p^3 + 840np \} \)

3. \(W_{ve}(BT_T(n, p)) = \frac{1}{10} \rho_{MS} \{ 16n^5 + 150n^4p + 90n^4p + 630n^4p + 465n^4 - 240n^3p^3 + 360n^3p^2 + 1590n^3p + 765n^3 - 180n^2p^4 - 1080n^2p^3 + 630n^2p^2 + 1830n^2p + 600n^2 + 360n^2p - 180n^2p - 480n^2p + 90n^2p + 180n - 120p^6 + 360p^5 + 60p^4 - 720p^3 + 300p^2 + 120p \} \)

4. \(S_e(BT_T(n, p)) = \frac{1}{16} \rho_{MS} \{ 15n^6 + 90n^5p + 135n^5 + 90n^4p + 630n^4p + 465n^4 - 240n^3p^3 + 360n^3p^2 + 1590n^3p + 765n^3 - 180n^2p^4 - 1080n^2p^3 + 630n^2p^2 + 1830n^2p + 600n^2 + 360n^2p - 180n^2p - 480n^2p + 90n^2p + 180n - 120p^6 + 360p^5 + 60p^4 - 720p^3 + 300p^2 + 120p \} \)

5. \(S_e(BT_T(n, p)) = \frac{1}{10} \rho_{MS} \{ 9n^6 + 54n^5p + 69n^5 + 54n^4p + 210n^4 - 144n^3p^3 + 204n^3p^2 + 678n^3p + 327n^3 - 108n^2p^4 - 504n^2p^3 + 294n^2p^2 + 672n^2p + 267n^2 - 216n^p - 180n^p - 480n^p^3 + 186n^p^2 + 312n^p + 98n - 72p^6 + 216p^5 - 120p^4 - 120p^3 + 42p^2 + 54p + 8 \} \)
6. \(S_{\text{ev}}(BT_T(n, p)) = \frac{1}{20} \rho_{\text{MS}}^2 \{ \gamma_M(20 + 190n + 60p + 520n^2 + 645n^3 + 405n^4 + 125n^5 + 15n^6 + 235p^2 - 470p^3 - 65p^4 + 360p^5 - 120p^6 + 505np^2 + 1425n^2p - 1190np^3 + 1350n^3p - 240np^4 + 580n^4p + 360np^5 + 90n^5p + 575n^2p^2 - 960n^2p^3 + 350n^3p^2 - 180n^2p^4 - 240n^3p^3 + 90n^4p^2 + 625np) + \gamma_s(470 + 1859n + 560p + 3245n^2 + 3040n^3 + 1515n^4 + 361n^5 + 30n^6 + 1130p^3 - 3140p^4 + 970p^5 - 240p^6 + 1430np^2 + 5420np^3 + 4940n^2p - 60np^4 + 1580n^4p + 720n^5p + 1270n^2p^2 - 2760n^2p^3 + 700n^3p^2 - 360n^2p^4 - 480n^3p^3 + 180n^4p^2 + 3890np) \}. \\
7. \(PI(BT_T(n, p)) = \rho_{\text{MS}}^2 \{ 9n^4 + 36n^3p + 50n^3 + 132n^2p + 105n^2 - 72np^3 - 24np^2 + 140np + 102n + 36p^4 - 72p^3 - 8p^2 + 44p + 38 \}. \\
8. \(S(BT_T(n, p)) = \frac{1}{7} \rho_{\text{MS}} \{ \gamma_M(30 + 173n + 200p + 315n^2 + 250n^3 + 90n^4 + 12n^5 - 120p^2 - 160p^3 + 80p^4 - 150np^2 + 630n^2p - 280np^3 + 320n^3p + 60np^4 + 60n^4p - 60n^2p^2 - 120n^2p^3 + 570np) + \gamma_s(700 + 1996n + 1060p + 2160n^2 + 1110n^3 + 270n^4 + 24n^5 - 840p^2 - 440p^3 + 220p^4 - 1020np^2 + 2340n^2p - 680np^3 + 880n^3p + 120n^4p + 120n^4p - 300n^2p^2 - 240np^3 + 2640np) \}. \\
9. \(Gut(BT_T(n, p)) = \frac{6}{7} \rho_{\text{MS}} \{ 12n^5 + 60n^4p + 90n^4 + 320n^3p + 260n^3 - 120n^2p^2 - 60n^2p^2 + 660n^2p + 360n^2 + 60np^4 - 280np^3 - 180np^2 + 640np + 233n + 80p^4 - 160p^3 - 160p^2 + 240p + 55 \}. \\

Proof. In this case, we have the same strength-weight parameter values as in Table 4 for all \(\Theta \)-classes except for the \(\Theta \)-class \(A_{3p}^T \), where we have \(A_{3p}^T(s) = \rho_{\text{MS}}(i + p + 2q + 2) \). The parameter set \(\{n, p, q\} \) also reduces to \(\{n, p, n - p\} \). Thus following the proof lines of Theorem 7 with the given variation in the parameter set, we obtain the results.

\[
TI(BT_T(n, p)) = \sum_{i=1}^{q+1} TI(BT_T(n, p)/H_i^T) + \sum_{i=1}^{p} TI(BT_T(n, p)/H_{i-1}^T) + 2 \sum_{i=1}^{p-1} TI(BT_T(n, p)/A_i^T) + 2TI(BT_T(n, p)/A_{p-1}^T) + 2 \sum_{i=1}^{q} TI(BT_T(n, p)/A_{i-1}^T) + \sum_{i=1}^{2n+p+q+7} TI(BT_T(n, p)/P_i^T).
\]

Theorem 9. For hexagonal shape 1T MS\(_2\) monolayer \(H_T(k) \), we have

1. \(Mo(H_T(k)) = k \rho_{\text{MS}} \{ \gamma_M(27k^3 + 9k) + \gamma_s(54k^3 + 32k^2 + 30k + 10) \} \).
2. \(Mo_c(H_T(k)) = 18k^2 \rho_{\text{MS}}^2(9k^2 + 2) \).
3. \(Mo_s(H_T(k)) = k \rho_{\text{MS}} \{ \rho_{\text{MS}}(162k^3 + 36k) + \gamma_M(27k^3 + 9k) + \gamma_s(54k^3 + 32k^2 + 30k + 10) \} \).
4. \(w^+Mo(H_T(k)) = \frac{3}{5} k \rho_{\text{MS}}^2 \{ \gamma_M(1692k^4 - 945k^3 + 360k^2 - 45k - 27) + \gamma_s(3384k^4 + 90k^3 - 520k^2 + 300k + 166) \} \).
5. \(w^+ Mo_e(H_T(k)) = \frac{36}{5} k \rho_{MS}^3 \{ 564k^4 - 315k^3 + 50k^2 + 5k + 1 \}. \)

6. \(w^+ Mo_t(H_T(k)) = \frac{2}{5} k \rho_{MS}^2 \{ \rho_{MS}(10152k^4 - 5670k^3 + 900k^2 + 90k + 18) + \gamma_{M}(1692k^4 - 945k^3 + 360k^2 - 45k - 27) + \gamma_s(3384k^4 + 90k^3 - 520k^2 + 300k + 166) \}. \)

7. \(w^* Mo_o(H_T(k)) = \frac{12}{5} k \rho_{MS}^3 \{ \gamma_{M}(564k^4 - 405k^3 + 120k^2 - 45k - 9) + \gamma_s(1128k^4 - 150k^3 - 280k^2 + 22) \}. \)

8. \(w^* Mo_e(H_T(k)) = \frac{72}{5} k \rho_{MS}^4 \{ 564k^4 - 405k^3 + 50k^2 - 15k + 1 \}. \)

9. \(w^* Mo_t(H_T(k)) = \frac{12}{5} k \rho_{MS}^3 \{ \rho_{MS}(3384k^4 - 2430k^3 + 300k^2 - 90k + 6) + \gamma_{M}(564k^4 - 405k^3 + 120k^2 - 45k - 9) + \gamma_s(1128k^4 - 150k^3 - 280k^2 + 22) \}. \)

Proof. In \(H_T(k) \), we have \(H_{3i}^{Th}(w^+) = \rho_{MS}(18(i + k) - 11), H_{3i}^{Th}(w^*) = 6\rho_{MS}(6(i + k) - 5), H_{3i}^{Th}(w^+) = \rho_{MS}(18(i + k) + 7), H_{3i}^{Th}(w^*) = 6\rho_{MS}(6(i + k) + 1), P_{3i}^{Th}(w^+) = 7\rho_{MS} \) and \(P_{3i}^{Th}(w^*) = 6\rho_{MS}^2 \). Following the proof lines of Theorem 5, we obtain the indices \(TI \in \{ Mo, Mo_e, Mo_o, w^+ Mo, w^+ Mo_o, w^* Mo, w^* Mo_e, w^* Mo_o \} \) through the expression,

\[
TI(H_T(k)) = 3 \sum_{i=1}^{k} TI(H_T(k)/H_i^{Th}) + 3 \sum_{i=1}^{k-1} TI(H_T(k)/H_i^{Th}) + \sum_{i=1}^{3(2k+1)} TI(H_T(k)/P_i^{Th}).
\]

\(\square \)

Theorem 10. For parallelogram shape \(IT \ MS_2 \) monolayer \(P_T(p, q) \), \(1 \leq q \leq p \), we have

1. \(W(P_T(p, q)) = \frac{1}{54} (y^2(20)p^3q^2 + 40pq^3 + 20p^3 + 10p^2q^3 + 90p^2q^2 + 140pq^2 + 60p^2 + 5pq^4 + 40pq^3 + 125pq^2 + 130pq + 40p - q^5 + 25q^3 + 60q^2 + 36q) + \gamma_s^2(80p^3q^2 + 320pq^3 + 320pq^2 + 40p^2q^3 + 720p^2q^2 + 2180pq^2 + 1920p^2 + 20pq^4 + 320pq^3 + 2120pq^2 + 4640pq + 3280p - 4q^5 + 340q^3 + 1920q^2 + 3264q + 1800) + \gamma_s(80pq^3 + 240pq^2 + 160pq^2 + 40p^2q^3 + 540pq^2 + 1220pq^2 + 720pq^2 + 20pq^4 + 240pq^3 + 1160pq^2 + 1860pq + 920p - 4q^5 + 180pq^2 + 720pq + 904q + 360). \)

2. \(W_e(P_T(p, q)) = \frac{1}{54} \rho_{MS}^2 \{ 180pq^2 + 360pq^3 + 180pq^3 + 90pq^3 + 540pq^2 + 825pq^2 + 360pq^2 + 45pq^4 + 360pq^3 + 795pq^2 + 720pq + 210p - 9q^5 + 190q^3 + 360q^2 + 194q \}. \)

3. \(W_{ee}(P_T(p, q)) = \frac{1}{54} \rho_{MS} \{ y(90p + 83q + 150p^2 + 60pq^3 + 150q^3 + 70q^3 - 3q^5 + 315pq^2 + 345pq^2 + 120pq^3 + 120pq^3 + 15pq^4 + 225pq^2 + 30pq^2 + 60pq^2 + 300pq) + \gamma_s(450 + 1170p + 1156q + 960p^2 + 240p^3 + 960pq^2 + 260q^3 - 6q^5 + 1530pq^2 + 1590pq^2 + 360pq^3 + 360pq^3 + 30pq^4 + 720pq^2 + 60pq^2 + 120pq^3 + 2340q^2 \}. \)

4. \(S_{zz}(P_T(p, q)) = \frac{1}{54} \rho_{MS} \{ \frac{\partial}{\partial y}(30pq^3 + 90pq^3 + 80pq^3 + 20p^3 + 90pq^3 + 270pq^2 + 240pq^2 + 60pq^2 + 70pq^2 + 210pq^2 + 180pq + 40p + 5q^4 + 30q^3 + 55q^2 + 30q) + \frac{\partial}{\partial z}(120pq^3 + 640pq^3 + 90pq^3 + 320pq^3 \)}
\[
680p^2q^3 + 3240p^2q^2 + 4300p^2q + 1680p^2 - 20pq^4 + 860pq^3 + 4120pq^2 + 5500pq + 2260p + 4q^5 + 20q^4 + 380q^3 + 1660q^2 + 2196q + 900) + \gamma_{\omega}\gamma_{\omega}(120p^3q^3 + 500p^3q^2 + 540p^3q + 160p^3 + 520p^2q^3 + 1980p^2q^2 + 2120pq^2 + 660p^2 - 10pq^4 + 500pq^3 + 1970pq^2 + 2140pq + 680p + 2q^5 + 20q^4 + 210q^3 + 640q^2 + 628q + 180)\}.
\]

5. \(S_{\omega}(P_T(p, q)) = 2\rho^3_{MS} \{18p^3q^3 + 48p^3q^2 + 43p^3q + 12p^3 + 42p^2q^3 + 108p^2q^2 + 93p^2q + 24p^2 + 2pq^4 + 37pq^3 + 82pq^2 + 64pq + 14p + 3q^4 + 16q^3 + 23q^2 + 11q\}.

6. \(S_{\omega\omega}(P_T(p, q)) = \frac{1}{\Lambda^2\rho^2_{MS}} \{\gamma_{\omega}(360p + 280q + 600p^2 + 240p^3 + 565q^2 + 350q + 65q^4 + 2020pq^2 + 2340p^2q + 770pq^3 + 900p^3q + 20pq^4 + 2700p^2q^2 + 960p^2q^3 + 1020p^3q^2 + 360p^3q^3 + 1630pqq) + \gamma_{\omega}(900 + 3300p + 3128q + 3480p^2 + 960p^3 + 3430q^2 + 1300q^3 + 170q^4 + 12q^5 + 9680pq^2 + 10680p^2q + 2660p^3q^2 + 3000pq^3 - 20pq^4 + 10440p^2q^2 + 2880p^2q^3 + 720p^3q^3 + 1000pqq)\}.

7. \(PI(P_T(p, q)) = \frac{2}{3}\rho_{MS} \{54p^2q^2 + 102pq^2 + 54pq^2 + 96pq^2 + 180pq + 93p + 2q^3 + 54q^2 + 94q + 45\}.

8. \(S(P_T(p, q)) = \frac{2}{3}\rho_{MS} \{\gamma_{\omega}(45 + 180p + 173q + 195p^2 + 60p^3 + 195q^2 + 70q^3 - 3q^5 + 405pq^2 + 435pq^2 + 120pq^2 + 120p^2q + 15pq^4 + 270p^2q^2 + 30p^2q^3 + 60pq^3 + 480pq^3 + \gamma_{\omega}(720 + 1620p + 1660q + 1140pq + 240q^2 + 1140q^2 - 6q^5 + 1800pq^2 + 1860pq^2 + 360pq^3 + 360pq^3 + 30pq^4 + 810pq^2 + 60pq^3 + 120pq^3 + 306pq^3)\}.

9. \(Gut(P_T(p, q)) = \frac{2}{3}\rho_{MS} \{120p^2q^2 + 240pq^2 + 120pq^2 + 60pq^2 + 900pq^2 + 420pq^2 + 30pq^4 + 240pq^3 + 870pq^2 + 1140pq + 475p - 6q^5 + 130q^3 + 420q^2 + 466q + 165\}.

10. \(Mo(P_T(p, q)) = \frac{1}{\tau^2}\rho_{MS} \{\gamma_{\omega}(54 + 84p + 96q + 42pq^2 + 48pq^3 + 72pq^2 + 72pq + 36pq^2 + 144pq + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^p+q(q + 1)^2) + \gamma_{\omega}(216 + 348p + 376q + 180p^2 + 192q^2 + 8q^3 + 168pq^2 + 192pq^2 + 72pq^2 + 432pq + 12(-1)^p(q + 2)(q + 1) + 12(-1)^q(p + 2)(p + 1) + 12(-1)^p+q(q + 2)(q + 1))\}.

11. \(Mo_{\omega}(P_T(p, q)) = \frac{1}{2}\rho_{MS} \{80p + 84q + 144pq + 72pq^2 + 72pq^2 + 42p^2 + 44pq^2 + 36pq^2 + 42 + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^p+q(q + 1)^2)\}.

12. \(Mo_{\omega\omega}(P_T(p, q)) = \frac{1}{\tau^2}\rho_{MS} \{252 + 480p + 504q + 252pq + 264pq^2 + 432pq^2 + 432pq^2 + 216pq^2 + 864pq + 36(-1)^p(q + 1)^2 + 36(-1)^q(p + 1)^2 + 36(-1)^p+q(q + 1)^2) + \gamma_{\omega}(54 + 84p + 96q + 42pq^2 + 48pq^2 + 72pq^2 + 36pq^2 + 144pq + 6(-1)^p(q + 1)^2 + 6(-1)^q(p + 1)^2 + 6(-1)^p+q(q + 1)^2) + \gamma_{\omega}(216 + 348p + 376q + 180p^2 + 192q^2 + 8q^3 + 168pq^2 + 192pq^2 + 72pq^2 + 432pq + 12(-1)^p(q + 2)(q + 1) + 12(-1)^q(p + 2)(p + 1) + 12(-1)^p+q(q + 2)(q + 1))\}.

13. \(w^+ Mo(P_T(p, q)) = \frac{1}{\tau^2}\rho_{MS} \{\gamma_{\omega}(540 + 930p + 1392q + 600pq - 270pq^2 + 1200pq^2 + 180q^3 + 180q^4 + 108q^5 + 2700pq^2 + 3420pq^2 - 360pq^3 - 360pq^4 + 4680pq^2 + 1080pq^2 + 540pq^2 + 2880pq + 30(-1)^p(9q + 8)(q + 1)^2 + 30(-1)^q(9p + 8)(p + 1)^2 + 30(-1)^p+q(9q + 8)(q + 1)^2 + \gamma_{\omega}(2160 + 4200p + 5464q + \ldots)\}.

27
Proof. We have $|V_\gamma(P_T(p,q))| = \gamma_m(p+1)(q+1) + \gamma_s(6+4p+4q+2pq)$ and $|E_p(P_T(p,q))| = 6\rho_{ms}(p+1)(q+1)$ with the total number of vertices and edges as $5p+5q+3pq+7$ and $6(p+$
1)(q + 1) respectively. The strength-weighted parameters of all the Θ-classes are tabulated in Table 5. Furthermore, $X^{TP}_{2i}(w) = |V_6(B_7(n, p, q))| − X^{TP}_{1i}(w)$ and $X^{TP}_{2i}(s) = |E_7(B_7(n, p, q))| − X^{TP}_{1i}(s) − X^{TP}_{3i}(s)$.

Table 5: Strength-weighted parameters of $P_i^TP_i(p, q)/X^{TP}_{ki}$, $X \in \{H, O, A, P\}$

<table>
<thead>
<tr>
<th>Θ-class</th>
<th>Vertex parameters (w_e, s_e)</th>
<th>Edge parameters (w^+_e, w^+_e, s_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^{TP}_i: 1 \leq i \leq q$</td>
<td>$H^{TP}_{1i}(w) = \gamma_S(1 + 4i + p + 2ip)$</td>
<td>$H^{TP}{3i}(s) = 2\rho{MS}(p + 1)$</td>
</tr>
<tr>
<td></td>
<td>$+ i\gamma_M(p + 1)$</td>
<td>$H^{TP}{3i}(w^+) = 2\rho{MS}(9p + 8)$</td>
</tr>
<tr>
<td></td>
<td>$H^{TP}{1i}(s) = \rho{MS}(6i − 1)(p + 1)$</td>
<td>$H^{TP}{3i}(w^+) = 12\rho^2{MS}(3p + 2)$</td>
</tr>
<tr>
<td>$O^{TP}_i: 1 \leq i \leq p$</td>
<td>$O^{TP}_{1i}(w) = \gamma_S(1 + 4i + q + 2iq)$</td>
<td>$O^{TP}{3i}(s) = 2\rho{MS}(q + 1)$</td>
</tr>
<tr>
<td></td>
<td>$+ i\gamma_M(q + 1)$</td>
<td>$O^{TP}{3i}(w^+) = 2\rho{MS}(9q + 8)$</td>
</tr>
<tr>
<td></td>
<td>$O^{TP}{1i}(s) = \rho{MS}(6i − 1)(q + 1) \leq$</td>
<td>$O^{TP}{3i}(w^+) = 12\rho^2{MS}(3q + 2)$</td>
</tr>
<tr>
<td>$A^{TP}_i: 1 \leq i \leq q$</td>
<td>$A^{TP}_{1i}(w) = \gamma_S(1 + 3i + i^2)$</td>
<td>$A^{TP}{3i}(s) = \rho{MS}(2i + 1)$</td>
</tr>
<tr>
<td></td>
<td>$+ i\gamma_M(i + 1)/2$</td>
<td>$A^{TP}{3i}(w^+) = \rho{MS}(18i + 7)$</td>
</tr>
<tr>
<td></td>
<td>$A^{TP}{1i}(s) = i\rho{MS}(3i + 2)$</td>
<td>$A^{TP}{3i}(w^+) = 6\rho^2{MS}(6i + 1)$</td>
</tr>
<tr>
<td>$A^{TP}_i: q + 1 \leq i \leq p$</td>
<td>$A^{TP}_{1i}(w) = (\gamma_S(2 + 8i - 2q - 2q^2 + 4iq)$</td>
<td>$A^{TP}{3i}(s) = 2\rho{MS}(q + 1)$</td>
</tr>
<tr>
<td></td>
<td>$+ i\gamma_M(2i - q - q^2 + 2iq)/2$</td>
<td>$A^{TP}{3i}(w^+) = 2\rho{MS}(9q + 8)$</td>
</tr>
<tr>
<td></td>
<td>$A^{TP}{1i}(s) = \rho{MS}(q + 1)(6i - 3q - 1)$</td>
<td>$A^{TP}{3i}(w^+) = 12\rho^2{MS}(3q + 2)$</td>
</tr>
<tr>
<td>$A^{TP}_{-i}: 1 \leq i \leq q$</td>
<td>$A^{TP}_{-1i}(w) = (i + 1)((i + 2)\gamma_S + i\gamma_M)/2$</td>
<td>$A^{TP}{-3i}(s) = \rho{MS}(i + 1)$</td>
</tr>
<tr>
<td></td>
<td>$A^{TP}{-1i}(s) = 3i\rho{MS}(i + 1)/2$</td>
<td>$A^{TP}{-3i}(w^+) = \rho{MS}(6i + 4)$</td>
</tr>
<tr>
<td>$P^{TP}_i: 1 \leq i \leq 2(p + q + 3)$</td>
<td>$P^{TP}_{1i}(w) = \gamma_S$</td>
<td>$P^{TP}{3i}(s) = \rho{MS}$</td>
</tr>
<tr>
<td></td>
<td>$P^{TP}_{1i}(s) = 0$</td>
<td>$P^{TP}{3i}(w^+) = 7\rho{MS}$</td>
</tr>
<tr>
<td></td>
<td>$P^{TP}{1i}(w^+) = 6\rho^2{MS}$</td>
<td></td>
</tr>
</tbody>
</table>

We therefore derive the indices $TI \in \{W, W_e, W_{ee}, S_{ze}, S_{ze}, S_{ee}, P_1, S, Gut, Mo, Mo_e, Mo_t, w^+Mo, w^+Mo_e, w^+Mo_t, w^*Mo, w^*Mo_e, w^*Mo_t\}$ using the expression,

$$TI(P_i^TP_i(p,q)) = \sum_{i=1}^{q} TI(P_i^TP_i(p,q)/H^{TP}_{1i}) + \sum_{i=1}^{p} TI(P_i^TP_i(p,q)/O^{TP}_i) + 2 \sum_{i=1}^{q} TI(P_i^TP_i(p,q)/A^{TP}_{1i}) + + \sum_{i=q+1}^{p} TI(P_i^TP_i(p,q)/A^{TP}_{1i}) + \sum_{i=1}^{2(p+q+3)} TI(P_i^TP_i(p,q)/P^{TP}_{1i}).$$

4 Concluding Remarks

We have obtained the relativistic topological indices of two novel 2D transition metal disulfide mono-
layer materials in their two significant structural phase. We have shown that their graphs belong to
a family of partial cubes, a class of graphs whose metric structure is well-understood. The Mostar
type indices are hard to produce in closed forms for generalized bitrapezium shapes of MS$_2$ mono-
layers due to some setbacks in finding the absolute differences using the MATLAB interface, whereas a
script file can be easily generated from our computations to find the Mostar indices of a particular
structure. As the present model includes relativistic quantum effects, it is anticipated that the newly
developed model will provide greater insights into the molecular structures and 2D networks of these
novel materials. This better understanding of the geometries and behaviors of these high performance
thermoelectric materials will enable us to expand their applications in the emerging technology, since
the study on their opto-electronic properties is a new, exciting and rapidly growing area of research.

Acknowledgement

S. Klavžar acknowledges the financial support from the Slovenian Research Agency (research core
funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095, N1-0108).

References

tronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012)
699–712.

