The general position number of the Cartesian product of two trees

Jing Tiana, Kexiang Xua, Sandi Klavžarb,c,d

a College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China
b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
c Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
d Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

jingtian526@126.com (J. Tian)
kexxu1221@126.com (K. Xu)
sandi.klavzar@fmf.uni-lj.si (S. Klavžar)

Abstract

The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.

Keywords: general position set; general position number; Cartesian product; trees

AMS Math. Subj. Class. (2020): 05C05, 05C12, 05C35

1 Introduction

Let $d_G(x, y)$ denote, as usual, the number of edges on a shortest x, y-path in G. A set S of vertices of a connected graph G is a general position set if $d_G(x, y) \neq d_G(x, z) + d_G(z, y)$ holds for every $\{x, y, z\} \in \binom{S}{3}$. The general position number $\text{gp}(G)$ of G is the cardinality of a largest general position set in G. Such a set is briefly called a gp-set of G.
Before the general position number was introduced in [9], an equivalent concept was proposed in [14]. Much earlier, however, the general position problem has been studied by Körner [8] in the special case of hypercubes. Following [9], the graph theory general position problem has been investigated in [1, 3, 5, 6, 10, 11, 13].

The Cartesian product $G \square H$ of vertex-disjoint graphs G and H is the graph with vertex set $V(G) \times V(H)$, vertices (g, h) and (g', h') being adjacent if either $g = g'$ and $hh' \in E(H)$, or $h = h'$ and $gg' \in E(G)$. In this paper we are interested in $gp(G \square H)$, a problem earlier studied in [3, 6, 10, 13]. More precisely, we are interested in Cartesian products of two (finite) trees. (For some of the other investigations of the Cartesian product of trees see [2, 12, 15].) An important reason for this interest is the fact that the general position number of products of paths is far from being trivial. First, denoting with P_∞ the two-way infinite path, one of the main results from [10] asserts that $gp(P_\infty \square P_\infty) = 4$. Denoting further with G^n the n-fold Cartesian product of G, it was demonstrated in the same paper that $10 \leq gp(P_\infty^3) \leq 16$. The lower bound 10 was improved to 14 in [6]. Very recently, these results were superseded in [7] by proving that if n is an arbitrary positive integer, then $gp(P_\infty^n) = 2^{2n-1}$. Denoting with $n(G)$ the order of a graph G, in this paper we prove:

Theorem 1. If T and T^* are trees with $\min\{n(T), n(T^*)\} \geq 3$, then

$$gp(T \square T^*) = gp(T) + gp(T^*)$$

Theorem 1 widely extends the above mentioned result $gp(P_\infty \square P_\infty) = 4$. Further, the equality $gp(P_\infty^n) = 2^{2n-1}$ shows that Theorem 1 has no obvious (inductive) extension to Cartesian products of more than two trees. Hence, to determine the general position number of such products remains a challenging problem.

In the next section we give further definitions, recall known results needed, and prove several auxiliary new results. Then, in Section 3, we prove Theorem 1.

2 Preliminaries

Let T be a tree. The set of leaves of T will be denoted by $L(T)$, and let $\ell(T) = |L(T)|$. If u and v are vertices of T with $\deg(u) \geq 2$ and $\deg(v) = 1$, then the unique u, v-path is a branching path of T. If u is not a leaf of T, then there are exactly $\ell(T)$ branching paths starting from u; we say that the u is the root of these branching paths and that the degree 1 vertex of a branching path P is the leaf of P.

Lemma 1. ([9]) If T is a tree, then $gp(T) = \ell(T)$.

We next describe which vertices of a tree lie in some gp-set of the tree.
Lemma 2. A non-leaf vertex \(u \) in a tree \(T \) belongs to a gp-set of \(T \) if and only if \(T - u \) has exactly two components and at least one of them is a path.

Proof. First, let \(R \) be a gp-set of \(T \) containing the non-leaf vertex \(u \). Suppose that \(T - u \) has at least three components, say \(T_1, T_2 \) and \(T_3 \). Since \(R \) is a gp-set containing \(u \), \(R \) intersects with at most one of \(T_1, T_2 \) and \(T_3 \). Assume without loss of generality that \(R \cap V(T_2) = \emptyset \) and \(R \cap V(T_3) = \emptyset \). Choose vertices \(v \) and \(w \) in \(T \) such that \(v \in V(T_2) \) and \(w \in V(T_3) \). Then \((R - \{u\}) \cup \{v, w\} \) is a larger gp-set than \(R \) in \(T \), a contradiction.

Hence \(T - u \) has exactly two components, say \(T_1 \) and \(T_2 \). Now suppose that neither \(T_1 \) nor \(T_2 \) is a path. Then as above, we have \(R \cap V(T_1) = \emptyset \) or \(R \cap V(T_2) = \emptyset \). By symmetry, we assume that \(R \cap V(T_2) = \emptyset \). Since \(T_2 \) is not a path, there are at least two leaves \(x_1 \) and \(x_2 \) in \(T_2 \). Then the set \((R - \{u\}) \cup \{x_1, x_2\} \) is a larger gp-set than \(R \), again, in \(T \). Therefore, at least one of \(T_1 \) and \(T_2 \) is a path.

Conversely, we observe that \(u \) is a non-leaf vertex on a pendant path in \(T \). Then \(u \) belongs to a gp-set in \(T \).

In \(G \sqcap H \), if \(h \in V(H) \), then the subgraph of \(G \sqcap H \) induced by the vertices \((g, h)\), \(g \in V(G) \), is a \(G \)-layer, denoted with \(G^h \). Analogously \(H \)-layers \(^hH \) are defined. \(G \)-layers and \(H \)-layers are isomorphic to \(G \) and to \(H \), respectively. The distance function in Cartesian products is additive, that is, if \((g_1, h_1), (g_2, h_2) \in V(G \sqcap H)\), then

\[
d_{G \sqcap H}((g_1, h_1), (g_2, h_2)) = d_G(g_1, g_2) + d_H(h_1, h_2).
\]

If \(u, v \in V(G) \), then the interval \(I_G(u, v) \) between \(u \) and \(v \) in \(G \) is the set of all vertices lying on shortest \(u, v \)-paths, that is,

\[
I_G(u, v) = \{w : d_G(u, v) = d_G(u, w) + d_G(w, u)\}.
\]

In what follows, the notations \(d_G(u, v) \) and \(I_G(u, v) \) may be simplified to \(d(u, v) \) and \(I(u, v) \) if \(G \) will be clear from the context. Equality (1) implies that intervals in Cartesian products have the following nice structure, cf. [4, Proposition 12.4].

Lemma 3. If \(G \) and \(H \) are connected graphs and \((g_1, h_1), (g_2, h_2) \in V(G \sqcap H)\), then

\[
I_{G \sqcap H}((g_1, h_1), (g_2, h_2)) = I_G(g_1, g_2) \times I_H(h_1, h_2).
\]

Equality (1) also easily implies the following fact (also proved in [13]).

Lemma 4. Let \(G \) and \(H \) be connected graphs and \(R \) a general position set of \(G \sqcap H \). If \(u = (g, h) \in R \), then \(V(^hH) \cap R = \{u\} \) or \(V(G^h) \cap R = \{u\} \).

For finite paths the already mentioned result \(\text{gp}(P_{\infty} \sqcap P_{\infty}) = 4 \) reduces to:
Lemma 5. ([10]) If \(n_1, n_2 \geq 2 \), then

\[
gp(P_{n_1} \square P_{n_2}) = \begin{cases}
4; & \min\{n_1, n_2\} \geq 3, \\
3; & \text{otherwise}.
\end{cases}
\]

To conclude the preliminaries we construct special maximal (with respect to inclusion) general position sets in products of trees.

Lemma 6. Let \(T \) and \(T^* \) be two trees with \(\min\{n(T), n(T^*)\} \geq 3 \), \(v_i \in V(T) \setminus L(T) \), and \(v_j^* \in V(T^*) \setminus L(T^*) \). Then \((L(T) \times \{v_j^*\}) \cup (\{v_i\} \times L(T^*)) \) is a maximal general position set of \(T \square T^* \).

Proof. Set \(R = (L(T) \times \{v_j^*\}) \cup (\{v_i\} \times L(T^*)) \) and let \(V_0 = \{u, v, w\} \subseteq R \). We first consider the case when \(V_0 \subseteq L(T) \times \{v_j^*\} \) or \(V_0 \subseteq \{v_i\} \times L(T^*) \). By symmetry, assume that \(V_0 \subseteq L(T) \times \{v_j^*\} \). Then each vertex of \(V_0 \) is corresponding to a leaf of \(L(T) \) in the layer \(T^*_j \cong T \). Therefore \(u, v, w \) do not lie on a common geodesic in \(T \square T^* \).

In the following, without loss of generality, we can assume that \(u, w \in L(T) \times \{v_j^*\} \) with \(u = (v_k, v_j^*), w = (v_s, v_i^*) \) and \(v = (v_i, v_i^*) \in \{v_i\} \times L(T^*) \). By Equality (1), we have \(d(u, v) = d_T(v_k, v_i) + d_{T^*}(v_j^*, v_s) \) and \(d(u, w) = d_T(v_k, v_s) + d_{T^*}(v_j^*, v_i^*) \). Note that \(v_k, v_s \) are two distinct vertices in \(L(T) \) of \(T \) and \(v_i \in V(T) \setminus L(T) \).

Then \(d_T(v_k, v_i) < d_T(v_k, v_s) + d_T(v_s, v_i) \) whenever \(v_i \) lies on the \(v_k, v_s \)-geodesic or outside \(v_k, v_s \)-geodesic of \(T \). This implies that \(d(u, v) < d(u, w) + d(w, v) \) in \(T \square T^* \). Therefore \(w \) does not lie on the \(u, v \)-geodesic in \(T \square T^* \). Analogously, neither \(u \) lies on the \(v, w \)-geodesic nor \(v \) lies on the \(u, w \)-geodesic of \(T \square T^* \). Thus \(u, v, w \) do not lie on a common geodesic in \(T \square T^* \), which implies that \(R \) is a general position set in \(T \square T^* \).

Next we prove the maximality of \((L(T) \times \{v_j^*\}) \cup (\{v_i\} \times L(T^*)) \) as a general position set in \(T \square T^* \). Otherwise, there is a general position set \(R' \) in \(T \square T^* \) of order greater than \(\ell(T) + \ell(T^*) \) such that \(R \subset R' \). Then there exists a vertex \(z \in R' \setminus R \), say \(z = (v_p, v_q^*) \). If \(p = i \), then there exist two vertices \((v_i, v_s^*), (v_i, v_i^*) \in \{v_i\} \times L(T^*) \) such that \(z \in I_{T \square T^*}((v_i, v_s^*), (v_i, v_i^*)) \) (since \(n^*T^* \cong T^* \)). This is a contradiction showing that \(p \neq i \). Similarly, we have \(q \neq j \). Now we consider the positions of \(v_p \) in \(T \) and \(v_q^* \) in \(T^* \).

Suppose first that \(v_p \in L(T) \), \(v_q^* \in L(T^*) \). Then there are two vertices \((v_p, v_j^*), (v_i, v_i^*) \) in \(R \) such that \(z \in I_{T \square T^*}((v_p, v_j^*), (v_i, v_i^*)) \), contradicting that \(R \cup \{z\} \) is a general position set of \(T \square T^* \). If \(v_p \in L(T) \) and \(v_q^* \notin L(T^*) \), then we select a vertex \(v_q^* \in L(T^*) \) such that \(v_q^* \) is closer to the leaf of the corresponding branching path than \(v_q^* \) in \(T^* \). Then \(z \in I_{T \square T^*}((v_p, v_j^*), (v_i, v_q^*)) \), a contradiction. Similarly, \(v_p \notin L(T) \) and \(v_q^* \in L(T^*) \) cannot occur. Finally we assume that \(v_p \notin L(T) \), \(v_q^* \notin L(T^*) \). Now we select two vertices \(v_p \in L(T) \) and \(v_q^* \in L(T^*) \) such that \(v_p \) is closer to the leaf of the branching path than \(v_p \) in \(T \) and \(v_q^* \) is closer to the leaf of the branching path than \(v_q^* \) in \(T^* \). But then \((v_p, v_q^*) \in I_{T \square T^*}((v_p, v_j^*), (v_i, v_q^*)) \), a final contradiction.

\[\Box \]
3 Proof of Theorem 1

If T and T^* are both paths, then Theorem 1 holds by Lemma 5. In the following we may thus without loss of generality assume that T^* is not a path. Lemma 6 implies that $\text{gp}(T \sqcap T^*) \geq \text{gp}(T) + \text{gp}(T^*)$, hence it remains to prove that $\text{gp}(T \sqcap T^*) \leq \text{gp}(T) + \text{gp}(T^*)$. Set $n = n(T)$, $n^* = n(T^*)$, $V(T) = \{v_1, \ldots, v_n\}$, and $V(T^*) = \{v_1^*, \ldots, v_n^*\}$.

Assume on the contrary that there exists a general position set R of T such that $|R| > \text{gp}(T) + \text{gp}(T^*)$. Since the restriction of R to a T-layer of $T \sqcap T^*$ is a general position set of the layer (which is in turn isomorphic to T), the restriction contains at most $\text{gp}(T) = \ell(T)$ elements. Similarly, the restriction of R to a T^*-layer contains at most $\text{gp}(T^*) = \ell(T^*)$ elements. We may now distinguish the following cases.

Case 1. There exists a T-layer Tv_1^* with $|V(Tv_1^*) \cap R| = \text{gp}(T)$, or a T^*-layer Tv_1 with $|V(Tv_1) \cap R| = \text{gp}(T^*)$.

By the commutativity of the Cartesian product, we may without loss of generality assume that there is a layer Tv_1^* with $|R \cap V(Tv_1^*)| = \text{gp}(T^*)$. Let $R = R_1 \cup R_2$, where $R_1 = R \cap V(Tv_1^*)$ and $R_2 = R \setminus R_1$, that is, $R_2 = \bigcup_{t \in [n] \setminus \{i\}} (V(Tv_1^*) \cap R)$. Let further S^* be the projection of $R \cap V(Tv_1^*)$ on T^*, that is, $S^* = \{v_1^*: (v_i, v_1^*) \in R_1\}$. Since $|R_1| = \text{gp}(T^*)$, our assumption implies $|R_2| \geq \text{gp}(T) + 1$. Then, as $\text{gp}(T) = \ell(T)$, there exist two different vertices $w = (v_p, v_q^*)$ and $w' = (v_{p'}, v_{q'}^*)$ from R_2 such that v_p and $v_{p'}$ lie on a same branching path P of T. (Note that it is possible that $v_p = v_{p'}$.) We may assume that $d_T(v_{p'}, x) \leq d_T(v_p, x)$, where x is the leaf of P. We proceed by distinguishing two subcases based on the position of v_q^* and $v_{q'}^*$ in T^*.

Case 1.1. There exists a branching path P^* of T^* that contains both v_q^* and $v_{q'}^*$.

Recall that T^* is not a path. Lemma 2 implies that a vertex of a tree belongs to a gp-set if and only if it lies on a pendant path and has degree 1 or 2. Therefore, we can select P^* with the root of degree at least 3. Assume that $d_{T^*}(v_q^*, y) \leq d_{T^*}(v_{q'}^*, y)$, where y is the leaf of P^*. (The reverse case can be treated analogously.) Since S^* is a gp-set of T^* which is not isomorphic to a path, there is a vertex $v_k^* \in S^*$ lying on P^*. So we may consider that P^* is a branching path that contains v_q^*, $v_{q'}^*$, and a vertex $v_k^* \in S^*$. (It is possible that some of these vertices are the same.) Let $z = (v_i, v_k^*)$. Then $z \in R_1$. We proceed by distinguishing the following subcases based on the position of v_p, $v_{p'}$, and v_i in T.

Subcase 1.1.1. $v_{p'} \in I(v_i, v_p)$.

In this subcase, if v_k^* is closer than v_q^*, $v_{q'}^*$ to the leaf y of P^*, then, by Lemma 3, $w' \in I_{T \sqcap T^*}(w, z)$, a contradiction.

If $v_k^* \in I(v_q^*, v_{q'}^*)$, then since $\ell(T^*) \geq 3$, there exists $z' = (v_i, v_{k'}^*) \in \{v_i\} \times S^*$ such
that \(v_k^*, v_q^* \in I(v_q^*, v_k^*) \) in \(T^* \). Then we have
\[
d(w', z') = d_T(v_{p'}, v_i) + d_T(v_q^*, v_{k'}^*) = d_T(v_p, v_i) + d_T(v_q^*, v_k^*) + d_T(v_k^*, v_{k'}^*) = d(w', z) + d(z, z'),
\]
which implies that \(z \in I_{T \square T^*}(w', z') \), a contradiction.

Subcase 1.1.2. \(v_i \in I(v_p, v_{p'}) \).

In this subcase, if \(v_k^* \in I(v_q^*, v_{k'}^*) \) in \(P^* \), then \(z \in I_{T \square T^*}(w, w') \) by Lemma 3, a contradiction.

Assume that \(v_k^* \) is closer than \(v_q^*, v_{k'}^* \) to the leaf of \(P^* \). Since \(|S^*| = \ell(T^*) \geq 3 \), there is a vertex \(z' = (v_i, v_k^*) \in \{v_i\} \times S^* \) such that \(v_i^*, v_{k'}^* \in I(v_k^*, v_{k'}^*) \) in \(T^* \). Let \(v_i^* \) be on a branching path \(P''\) in \(T^* \) where \(P'' \neq P^* \). Note that \(\ell(T) + 1 \geq 3 \). There exists at least one vertex \(a = (v_x, v_y^*) \in R_2 \setminus \{w, w'\} \). Next we consider the positions of \(v_x, v_y^* \) in \(T, T^* \), respectively.

Suppose first that \(v_y^* \in V(P^* \cup P'') \). If \(v_x, v_p, v_{p'} \) and \(v_i \) lie on a path in \(T \), then there are five vertices \(w, w', z, z' \) and \(a \) in \(R_2 \), three of which lie on a common geodesic in \(T \square T^* \), a contradiction. Note that if \(T \) is a path, then we are done as above. Therefore, assume that \(T \) is not isomorphic to a path in the following and the root of \(P \) has degree at least 3. Otherwise, \(v_x \notin P \) and \(v_x, v_p \) lie on a common branching path in \(T \). Let \(V_s \) be the set of vertices of \(T \) but not contained in \(T_{ip} \) where \(T_{ip} \) is the subtree of \(T - v_p \) containing \(v_i \) and \(v_{p'} \). If there is a vertex \(a' = (v_s, v_i^*) \in R_2 \) with \(v_s \in V_s \), then \(R_2 \) contains \(w, w', z, z' \) and \(a' \), three of which are on a common geodesic, a contradiction. Therefore, the first coordinate of any vertex in \(R_2 \) cannot be in \(V_s \). Assume that \(P' \neq P \) is any branching path containing \(v_p \) and a leaf both in \(T_{ip} \) and \(T \). Then, besides \(w, P' \square T^* \) contains at most one vertex in \(R_2 \) of \(T \square T^* \). Otherwise, \(P' \square T^* \) contain two vertices \(h, h' \) in \(R_2 \). Then there exist two vertices \(h_0, h_0' \in \{v_i\} \times S^* \) such that three vertices from \(\{h, h', h_0, h_0', w\} \) lie on some geodesic in \(T \square T^* \), a contradiction. (Here \(h_0 \) may be equal to \(h_0' \).) Note that \(V_s \) contains at least two leaves of \(T \) since the root of \(P \) (just in \(V_s \)) has degree at least 3. Then \(T_{ip'} \) has at most \(\ell(T) - 2 \) leaves in \(T \). Since \(P \square T^* \) contains two vertices \(w \) and \(w' \) in \(R_2 \), we have \(|R_2| \leq \ell(T) - 2 + 1 < \ell(T) = \text{gp}(T) \), a contradiction with the assumption.

Assume now that \(v_y^* \notin V(P^* \cup P'') \). Then there exists a vertex \(z'' = (v_i, v_{k''}) \in \{v_i\} \times S^* \) such that \(v_y^*, v_{k''} \) lie on a common branching path in \(T^* \). If \(v_y^* \) is closer to the leaf of the branching path than \(v_{k''} \) in \(T^* \), then \(v_i \in I(v_x, v_i) \) and \(v_{k''} \in I(v_y^*, v_{k''}) \). Therefore, by Lemma 3, we get \(z'' \in I_{T \square T^*}(a, z) \), a contradiction. In the case that \(v_{k''} \) is closer to the leaf of the branching path than \(v_y^* \) in \(T^* \), we consider the positions of \(v_x, v_p, v_{p'} \) and \(v_i \) in \(T \). Let \(V_1 = \{z, z', w, w', a, z''\} \). Then \(V_1 \subseteq R_2 \). If \(v_x, v_p, v_{p'} \) and \(v_i \) lie on a path in \(T \), then there exist three vertices in \(V_1 \) lying on a common geodesic in
In this subcase, if \(v \in I(v_i, v_p) \).

In this subcase, since \(\ell(T^*) \geq 3 \), there exists a vertex \(z' = (v_i, v_{k'}) \in \{v_i\} \times S^* \) such that \(v_{k'} \notin P^* \) and \(v_q^* \in I(v_i, v_{k'}) \) in \(T^* \). Since

\[
d(z', w') = d_T(v_i, v_{k'}) + d_{T^*}(v_{k'}, v_q^*) = d_T(v_i, v_p) + d_{T^*}(v_{k'}, v_q^*) + d_T(v_p, v_{k'}) + d_{T^*}(v_{k'}, v_q^*) = d(z', w) + d(w, w'),
\]

we have \(w \in I_{T \square T^*}(z', w') \), a contradiction.

Subcase 1.1.4. \(v_i \notin V(P) \) such that \(v_i, v_p \) lie on a same branching path in \(T \).

In this subcase, since \(\ell(T^*) \geq 3 \), there is a vertex \(z' = (v_i, v_{k'}) \in \{v_i\} \times S^* \) such that \(v^*_q \in I(v_{k'}, v_{k'}) \) in \(T^* \). If \(v_{k'} \in I(v_q^*, v_{k'}) \), then obviously \(v_{k'} \in I(v_q^*, v_{k'}) \) and therefore,

\[
d(w', z') = d_T(v_p, v_i) + d_{T^*}(v_{k'}, v_{k'}) = d_T(v_p, v_i) + d_{T^*}(v_{q}, v_{k'}) + d_{T^*}(v_{k'}, v_{k'}) = d(w', z) + d(z, z')).
\]

We conclude that \(z \in I_{T \square T^*}(w', z') \), a contradiction.

If \(v_{k'}^* \) is closer to the leaf of \(P^* \) than \(v_{q}^*, v_{q'}^* \), then we get a contradiction similarly as in Subcase 1.1.2.

Case 1.2. \(v_q^* \) and \(v_{q'}^* \) do not lie on a same branching path in \(T^* \).

In this subcase, we may assume that \(v_q^* \) and \(v_{q'}^* \) lie on distinct branching paths \(P^* \) and \(P'^* \) in \(T^* \), respectively. Since \(\ell(T^*) \geq 3 \) and \(T^* \) is not isomorphic to a path, there exist two vertices \(z = (v_i, v_{k'}) \) and \(z' = (v_i, v_{k'}) \) from \(\{v_i\} \times S^* \), such that \(v_{k'} \in P^* \) and \(v_{k'}^* \in P'^* \). We consider the following subcases based on the positions of \(v_p, v_{p'} \) and \(v_i \) in \(T \).

Subcase 1.2.1. \(v_{p'} \in I(v_i, v_{p}) \).

In this subcase, if \(v_{k'}^* \) is closer than \(v_{q'}^* \) to the leaf of \(P'^* \), then \(v_{p'}^* \in I(v_{p}, v_{i}) \) and \(v_{q'}^* \in I(v_{p}, v_{k'}) \). Lemma 3 gives \(w' \in I_{T \square T^*}(w, z') \), a contradiction. On the other hand, if \(v_{q'}^* \) is closer than \(v_{k'}^* \) to the leaf of \(P'^* \), then \(v_i \in I(v_{i}, v_{p'}) \) and \(v_{k'}^* \in I(v_{k'}, v_{q'}) \), hence Lemma 3 gives \(z' \in I_{T \square T^*}(w', z) \), a contradiction again.

Subcase 1.2.2. \(v_i \in I(v_{p}, v_{p'}) \).

In this subcase, we first assume that \(v_{q'}^* \) is closer than \(v_{k'}^* \) to the leaf of \(P'^* \). Then \(v_i \in I(v_{i}, v_{p'}) \) and \(v_{k'}^* \in I(v_{k'}, v_{q'}) \). Therefore, by Lemma 3, we get \(z' \in I_{T \square T^*}(z, w') \) as a contradiction. Otherwise we suppose that \(v_{k'}^* \) is closer than \(v_{q'}^* \) to the leaf of \(P'^* \). If \(v_{q'}^* \)
is closer than \(v_k^* \) to the leaf of \(P^* \), then \(v_i \in I(v_p, v_i) \) and \(v_k^* \in I(v_q^*, v_k^*) \). Therefore, by Lemma 3, we get \(z \in I_{T \sqcap T^*}(w, z') \), a contradiction. In the case that \(v_k^* \) is closer than \(v_q^* \) to the leaf of \(P^* \), we find a contradiction similarly as the proof of Subcase 1.1.2.

Subcase 1.2.3. \(v_p \in I(v_i, v_p') \).

In this subcase, if \(v_k^* \) is closer than \(v_q^* \) to the leaf of \(P^* \), then \(v_p \in I(v_i, v_p') \) and \(v_k^* \in I(v_q^*, v_k^*) \). So Lemma 3 gives \(w \in I_{T \sqcap T^*}(z, w') \), a contradiction. And if \(v_q^* \) is closer than \(v_k^* \) to the leaf of \(P^* \), then \(v_i \in I(v_i, v_p) \) and \(v_k^* \in I(v_k^*, v_q^*) \), hence we get \(z \in I_{T \sqcap T^*}(z', w) \).

Subcase 1.2.4. \(v_i \notin V(P) \) such that \(v_i, v_p \) lie on a same branching path in \(T \).

First suppose that \(v_q^* \) is closer to the leaf than \(v_k^* \) in \(P^* \), then \(v_i \in I(v_i, v_p) \) and \(v_k^* \in I(v_q^*, v_k^*) \). Thus, by Lemma 3, we get \(z \in I_{T \sqcap T^*}(w, z') \).

Assume that \(v_k^* \) is closer than \(v_q^* \) to the leaf of \(P^* \). If \(v_q^* \) is closer to the leaf than \(v_k^* \), then \(v_i \in I(v_i, v_p) \) and \(v_k^* \in I(v_q^*, v_k^*) \), which gives \(z' \in I_{T \sqcap T^*}(z, w') \). If \(v_k^* \) is closer than \(v_q^* \) to the leaf of \(P^* \), we can proceed similarly as in Subcase 1.1.4.

Now we turn to the second case.

Case 2. \(|R \cap V(v_k T^*)| < \ell(T^*) \) for any \(k \in [n] \), and \(|R \cap V(v_q T^*)| < \ell(T) \) for any \(t \in [n^*] \).

In this case, let \(v_k T^* \) be a layer with \(|R \cap V(v_k T^*)| = \max\{|R \cap V(v_k T^*)| : k \in [n]\} \). Let \(R = R_1 \cup R_2 \) where \(R_1 = R \cap V(v_k T^*) \) and \(R_2 = R \setminus R_1 \), that is, \(R_2 = \bigcup_{k \in [n] \setminus \{i\}} (V(v_k T^*) \cap R) \). Set further \(S^* = \{v_j^*: (v_i, v_j^*) \in R_1\} \). Then \(1 \leq |S^*| \leq \ell(T^*) - 1 \).

Assume first \(|S^*| = 1 \). Therefore \(|R \cap V(v_k T^*)| \leq 1 \) for any \(k \in [n] \). Next we only need to consider \(|R \cap V(v_q T^*)| \leq 1 \) for any \(j \in [n^*] \). (If \(|R \cap V(v_q T^*)| \geq 2 \) for some \(j \in [n^*] \), by commutativity of \(T \sqcap T^* \), the proof is similar to the subcase in which \(2 \leq |S^*| \leq \ell(T^*) - 1 \). Therefore, suppose that \(|R \cap V(v_q T^*)| \leq 1 \) for any \(j \in [n^*] \). Then \(|R| \leq \min\{n, n^*\} \). We now claim that \(|R| \leq \ell(T) + \ell(T^*) \). If not, then since \(|R| \geq \ell(T) + \ell(T^*) + 1 \geq 6 \), there exist three vertices \(u = (v_p, v_j^*), v = (v_p, v_q^*) \) and \(w = (v_s, v_t^*) \) from \(R \) such that \(v_p, v_p \) lie on a same branching path in \(T \), and \(v_j^*, v_q^* \) lie on a common branching path in \(T^* \). Note that there may be \(p' = s, q = t \). But we can always select a vertex \(h \in R \setminus \{u, v, w\} \) such that \(u, v, h \) or \(u, w, h \) lie on a same geodesic in \(T \sqcap T^* \), which is a contradiction. So our result holds when \(|S^*| = 1 \).

Suppose second that \(2 \leq |S^*| \leq \ell(T^*) - 1 \). As \(|R_1| = |S^*| \), we need to prove that \(|R_2| \leq \ell(T) + \ell(T^*) - |S^*| \). Assume on the contrary that \(|R_2| \geq \ell(T) + \ell(T^*) - |S^*| + 1 \). Since \(|S^*| \geq 2 \), there are two distinct vertices \(w = (v_i, v_j^*) \) and \(w' = (v_i, v_j^*) \) from \(\{v_i\} \times S^* \). We distinguish the following cases based on the positions of \(v_j^*, v_j^* \) in \(T^* \).

Case 2.1. \(v_j^* \) and \(v_j^* \) lie on a same branching path \(P^* \) of \(T^* \).

In this subcase, we may without loss of generality assume that \(v_j^* \) is closer than \(v_j^* \).
to the leaf of P^*. Let $T_{v_j\ell}^*$ be the maximal subtree of $T^* - v_j'$ containing v_j' and let $V_{s^*} = V(T^*) \setminus V(T_{v_j\ell}^*)$. Let further $S_1^* = \{v_q^* : v_q^* \in I(v_j', v_j^*), v_j^* \in S^* \cap V(T_{v_j\ell}^*)\}$. Now we prove the following claim.

Claim 1. If $z = (v_p, v_p^*) \in R_2$, then $v_j^* \in S_1^*$.

Proof of Claim 1. If not, suppose first that $v_j^* \in V(P^*)$ is closer than v_j' to the leaf of P^*. Then $v_i \in I(v_j, v_j')$ and $v_j^* \in I(v_j^*, v_j')$. Hence, $w' \in I_{T \cap T^*}(w, z)$. And if $v_j^* \in V_{s^*}$, then $v_j^* \in I(v_j^*, v_j')$. Combining this fact with $v_i \in I(v_i, v_p)$, we have $w \in I_{T \cap T^*}(w', z)$. This proves Claim 1.

By Claim 1, we have $|\bigcup_{v_j^* \in S_1^*} (V(T_{v_j\ell}^*) \cap R)| \geq \ell(T) + \ell(T^*) - |S^*| + 1 \geq \ell(T) + 1$.

Then there exist two vertices $z = (v_p, v_p^*)$ and $z' = (v_p', v_p'^*)$ from $\bigcup_{v_j^* \in S_1^*} (V(T_{v_j\ell}^*) \cap R)$ such that $v_j^*, v_{j'}^* \in S_1^*$ and v_p, v_p' lie on a same branching path P in T. Without loss of generality, let v_p' be closer than v_p to the leaf of P, and let $v_j^*, v_{j'}^* \in I(v_j^*, v_j')$ (by the definition of S_1^*). We consider the following subcases according to the positions of v_i, v_p, v_p' in T.

Subcase 2.1.1. $v_p' \in I(v_i, v_p)$.

If $v_{j'}^*$ is closer than v_j^* to $v_{j'}^*$ in P^*, then we have $v_p' \in I(v_i, v_p)$ and $v_{j'}^* \in I(v_{j'}^*, v_{j'}^*)$. Therefore, $z' \in I_{T \cap T^*}(z, w')$. And if v_j^* is closer than v_p' to v_p in P^*, then we have $v_p' \in I(v_i, v_p)$ and $v_p' \in I(v_p^*, v_p'^*)$ and so $z' \in I_{T \cap T^*}(z, w)$.

Subcase 2.1.2. $v_i \in I(v_p, v_p')$.

Note that $\ell(T) + \ell(T^*) - |S^*| + 1 \geq 4$. Then there exists at least a vertex $a = (v_j, v_j') \in \bigcup_{v_j^* \in S_1^*} (V(T_{v_j\ell}^*) \cap R)$ different from z and z'. Based on the position of $v_j^* (v_j^* \in P^*$ or $v_j^* \notin P^*)$ in T^*, and the positions of v_i, v_j, v_p and v_p' in T, we get contradictions using a similar proof as in Subcase 1.1.2.

Subcase 2.1.3. $v_p \in I(v_i, v_p')$.

If $v_{j'}^*$ is closer than v_j^* to $v_{j'}^*$ in P^*, then $v_j \in I(v_i, v_p')$ and $v_{j'}^* \in I(v_{j'}^*, v_{j'}^*)$, therefore $z \in I_{T \cap T^*}(w, z')$. And if v_j^* is closer than v_p' to v_p^* in P^*, then $v_j \in I(v_i, v_p')$ and $v_j^* \in I(v_j^*, v_j'^*)$, hence $z \in I_{T \cap T^*}(w, z')$.

Subcase 2.1.4. $v_i \notin V(P)$ such that v_i, v_p lie on a same branching path in T.

Since $\ell(T) + \ell(T^*) - |S^*| + 1 \geq 4$, there exists a vertex $(v_j, v_j') \in \bigcup_{v_j^* \in S_1^*} (V(T_{v_j\ell}^*) \cap R)$. Proceeding similarly as in Subcase 1.1.4, we get required contradictions. But then $|\bigcup_{v_j^* \in S_1^*} (V(T_{v_j\ell}^*) \cap R)| \leq \ell(T) + \ell(T^*) - |S^*|$, a contradiction with the assumption.

Case 2.2. $v_j^*, v_j'^*$ lie on different branching paths P^*, P^* in T^*, respectively.

In this subcase, let S_2^* be a set of vertices of $v_i T^*$ closer to the leaf of a branching path than v_j^* for any $v_j^* \in S^*$. Note that $S^* \cap S_2^* = \emptyset$. We prove the following claim.

Claim 2. If $(v_p, v_p^*) \in R_2$, then $v_j^* \in V(T^*) \setminus (S^* \cup S_2^*)$.

9
Proof of Claim 2. Lemma 4 implies $v^*_i \notin S^*$. Assume that $v^*_i \in S^*_2$ lies on a same branching path for some v^*_g in T^*. Note that $|S^*| \geq 2$. Then there exists another vertex v^*_g such that $v^*_g \in I(v^*_i, v^*_g)$. Combining this fact with $v_i \in I(v_i, v_p)$, we arrive at a contradiction $w \in I_T(z, w')$. This proves Claim 2.

Let now $S^*_r = \{v^*_q : v^*_q \in I(v^*_g, v^*_g), v^*_g, v^*_g \in S^*\}$. By a parallel reasoning as in Subcase 2.1 and with Claim 2 in hands we infer that $| \bigcup_{v^*_i \in S^*_r} (V(T^*_{v^*_i}) \cap R) | \leq \ell(T)$.

Let $S = \{v_k : (v_k, v^*_i) \in \bigcup_{v^*_i \in S^*_r} (V(T^*_{v^*_i}) \cap R) \}$ and set $S^{**} = V(T^*) \setminus (S \cup S^*_r)$. From the assumption we have $| \bigcup_{v^*_i \in S^{**}} (V(T^*_{v^*_i}) \cap R) | \geq \ell(T) + \ell(T^*) - |S| - |S^*| + 1$. So there exists a vertex $z = (v_p, v^*_i) \in \bigcup_{v^*_i \in S^{**}} (V(T^*_{v^*_i}) \cap R)$, and we can always select two distinct vertices $u = (v_h, v^*_g)$ and $v = (v_{h'}, v^*_g')$ from R such that v_p and v_h lie on a same branching path in T, while v^*_i and v^*_g lie on a common branching path in T^*. But we can choose another vertex $w \in R$ such that either u, w, z or u, v, z lie on a same geodesic in $T \Box T^*$ as a contradiction. Therefore,

$$| \bigcup_{v^*_i \in S^{**}} (V(T^*_{v^*_i}) \cap R) | \leq \ell(T) + \ell(T^*) - |S| - |S^*|.$$

and we are done.

Acknowledgements

Kexiang Xu is supported by NNSF of China (grant No. 11671202, and the China-Slovene bilateral grant 12-9). Sandi Klavžar acknowledges the financial support from the Slovenian Research Agency (research core funding P1-0297, projects J1-9109, J1-1693, N1-0095, and the bilateral grant BI-CN-18-20-008).

References

