The general position number of integer lattices

Sandi Klavžar a,b,c Gregor Rus c,d

a FMF, University of Ljubljana, Slovenia
b FNM, University of Maribor, Slovenia
c IMFM, Ljubljana, Slovenia
d FOV, University of Maribor, Slovenia

Abstract

The general position number $\text{gp}(G)$ of a connected graph G is the cardinality of a largest set S of vertices such that no three pairwise distinct vertices from S lie on a common geodesic. The n-dimensional grid graph P_n^∞ is the Cartesian product of n copies of the two-way infinite path P_∞. It is proved that if $n \in \mathbb{N}$, then $\text{gp}(P_n^\infty) = 2^{2n-1}$. The result was earlier known only for $n \in \{1, 2\}$ and partially for $n = 3$.

E-mails: sandi.klavzar@fmf.uni-lj.si, gregor.rus4@um.si

Key words: general position problem; Cartesian product of graphs; integer lattice; Erdős-Szekeres theorem

AMS Subj. Class.: 05C12, 05C76, 11B75

1 Introduction and preliminaries

Subsets of vertices of (infinite) grids with special properties are of wide interest, the variety [2, 4, 5, 7, 9, 11, 13] of such investigations clearly supports this statement. In this note, we are interested in largest general position sets of grids. By now only some specific results about these sets in grids were known, here we solve the problem completely.

A set S of vertices of a connected graph G is a general position set if $d_G(u, v) \neq d_G(u, w) + d_G(w, v)$ holds for every $\{u, v, w\} \in \binom{S}{3}$, where $d_G(x, y)$ denotes the distance of the shortest-path between x and y in G. The general position number $\text{gp}(G)$ of G is the cardinality of a largest general position set in G. This concept and terminology was introduced in [17], in part motivated by the century old
Dudeney’s No-three-in-line problem [6]. A couple of years earlier and in different
terminology, the problem was also considered in [20]. Moreover, in the special
case of hypercubes, the general position problem has been studied back in 1995
by Körner [16]. Following these seminal papers, the general position problem has
been studied from different perspectives in several subsequent papers [1, 10, 14, 15, 18, 19].

The Cartesian product \(X \square Y\) of graphs \(X\) and \(Y\) is the graph with the vertex
set \(V(X) \times V(Y)\), vertices \((x, y)\) and \((x', y')\) being adjacent if either \(x = x'\) and
\(yy' \in E(Y)\), or \(y = y'\) and \(xx' \in E(X)\). The Cartesian product \(X_1 \square \cdots \square X_n\),
where each factor \(X_i\) is isomorphic to \(X\), will be shortly denoted by \(X^n\). If \(P_\infty\)
denotes the two-way infinite path, then one of the main results from [18] asserts
that \(\text{gp}(P_\infty^2) = 4\). In the same paper it was also proved that \(10 \leq \text{gp}(P_\infty^3) \leq 16\).
The lower bound 10 was improved to 14 in [15]. In this note we round these
investigations by proving the following result.

Theorem 1 If \(n \in \mathbb{N}\), then \(\text{gp}(P_\infty^n) = 2^{2^{n-1}}\).

In the rest of the section, we list some further notation and preliminary results.
In the next section, we prove the theorem. In the concluding section, we give a
couple of consequences of the theorem and pose an open problem.

For a positive integer \(k\) we will use the notation \([k] = \{1, \ldots, k\}\). Throughout
we will set \(V(P_\infty) = \mathbb{Z}\), where \(u, v \in V(P_\infty)\) are adjacent if and only if \(|u - v| = 1\).
With this convention we have \(V(P_\infty^n) = \mathbb{Z}^n\). If \(u \in V(P_\infty^n)\), then for the
dimensions of \(u\) we will use the notation \(u = (u_1, \ldots, u_n)\). If a vertex from
\(V(P_\infty^n)\) will be indexed, say \(u_i \in V(P_\infty^n)\), then this notation will be extended as
\(u_i = (u_{i,1}, \ldots, u_{i,n})\). From the Distance Lemma [12, Lemma 12.2] it follows that

\[
d_{P_\infty^n}(u, v) = \sum_{i=1}^{n} |u_i - v_i|.
\]

From here it is not difficult to deduce that a vertex \(w \in V(P_\infty^n)\) lies on a shortest
\(u, v\)-path in \(P_\infty^n\) if and only if \(\min\{u_i, v_i\} \leq w_i \leq \max\{u_i, v_i\}\) holds for every
\(i \in [n]\).

A sequence of real numbers is *monotone* if it is monotonically increasing or
monotonically decreasing. The celebrated Erdős-Szekeres result on monotone
sequences reads as follows (cf. also [3, Theorem 1.1]).

Theorem 2 [8] For every \(n \geq 2\), every sequence \((a_1, \ldots, a_N)\) of real numbers
with \(N \geq (n-1)^2 + 1\) elements contains a monotone subsequence of length \(n\).
2 Proof of Theorem 1

Theorem is obviously true for \(n = 1 \) and was proved for \(n = 2 \) in [18, Corollary 3.2].

Let now \(n \geq 3 \) and let \(U^{(1)} = \{ u_1, \ldots, u_{2^{2n-1}} \} \) be a set of vertices of \(P_n \) of cardinality \(2^{2n-1} + 1 \). We may without loss of generality assume that the first coordinates of the vertices from \(U^{(1)} \) are ordered, that is, \(u_{1,1} \leq u_{2,1} \leq \cdots \leq u_{2^{2n-1}+1,1} \). By Theorem 2, there exists a subset \(U^{(2)} \) of \(U^{(1)} \) of cardinality \(2^{2n-2} + 1 \), such that the second coordinates of the vertices from \(U^{(2)} \) form a monotone (sub)sequence. Inductively applying this argument, we arrive at a set \(U^{(n)} \subset U^{(n-1)} \) of cardinality \(2^{2n-n} + 1 = 3 \), in which the \(n \)th coordinates of the three vertices form a monotone (sub)sequence. As \(U^{(n)} \subset U^{(n-1)} \subset \cdots \subset U^{(1)} \), the induction argument yields that for every \(i \in [n-1] \), the \(i \)th coordinates of the vertices from \(U^{(n)} \) likewise form a monotone (sub)sequence. If \(U^{(n)} = \{ u, v, w \} \), where \(u_1 \leq v_1 \leq w_1 \), this implies (having (1) in mind) that \(v \) lies on a shortest \(u, w \)-path. We conclude that \(gp(P_n) \leq 2^{2n-1} \).

To prove the other inequality we are going to inductively construct a general position set \(X^{(n)} = \{ x^{(n)}_1, \ldots, x^{(n)}_{2^{2n-1}} \} \) for \(n \geq 2 \) as follows. Set \(X^{(2)} = \{(1,2), (2,1), (3,4), (4,3)\} \), where \(x^{(2)}_1 = (1,2), x^{(2)}_2 = (2,1), x^{(2)}_3 = (3,4), \) and \(x^{(2)}_4 = (4,3) \). Suppose now that \(X^{(n-1)} \) is defined for some \(n \geq 3 \), and construct \(X^{(n)} \) as follows. Set first

- \(x^{(n)}_{i,1} = i, i \in [2^{2n-1}] \).

Next, write each \(i \in [2^{2n-1}] \) as \(i = p \cdot 2^{2n-2} + r \), where \(0 \leq p < 2^{2n-2} \) and \(r \in [2^{2n-2}] \), and set

- \(x^{(n)}_{i,j} = \left(x^{(n-1)}_{r+1,j} - 1 \right) \cdot 2^{2n-2} + x^{(n-1)}_{r,j} \) for each \(j \in \{ 2, \ldots, n-1 \} \), and
- \(x^{(n)}_{i,n} = x^{(n-1)}_{r+1,n-1} \cdot 2^{2n-2} - x^{(n-1)}_{r,n-1} + 1 \).

Roughly speaking, for the \(j \)th coordinate, where \(j \in \{ 2, \ldots, n-1 \} \), we partition the sequence \(\{ x^{(n)}_{i,j} \}_{i=1}^{2^{2n-2}} \) into \(2^{2n-2} \) blocks each of \(2^{2n-2} \) values and sort the blocks as well as the values inside the blocks according to the values \(\{ x^{(n-1)}_{i,j} \}_{i=1}^{2^{2n-2}} \). The values of the \(n \)th coordinate is then obtained from the values of the \((n-1) \)th coordinate by reversing the sequence in each of the \(2^{2n-2} \) blocks, while keeping the sequence of the blocks. For example, the coordinates of the vertices from \(X^{(3)} \) are shown in Table 1.

To complete the proof it suffices to show that for each \(n \geq 2 \), the set \(X^{(n)} \) forms a general position set of \(P_n \). We proceed by induction on \(n \), the base case \(n = 2 \) being clear. Suppose now that \(X^{(n-1)} \) is a general position set of
\[\begin{array}{c|cc} i & 1 & 2 \\ \hline x_{i,1}^{(1)} & 1 & 2 \\
\end{array} \]

\[\begin{array}{c|cccc} i & 1 & 2 & 3 & 4 \\ \hline x_{i,1}^{(2)} & 1 & 2 & 3 & 4 \\ x_{i,2}^{(2)} & 2 & 1 & 4 & 3 \\
\end{array} \]

\begin{center}
\begin{tabular}{c|cccccccccccccccc}
\hline
\textipa{i} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline
x_{i,1}^{(3)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
x_{i,2}^{(3)} & 6 & 5 & 8 & 7 & 2 & 1 & 4 & 3 & 14 & 13 & 16 & 15 & 10 & 9 & 12 & 11 \\
x_{i,3}^{(3)} & 7 & 8 & 5 & 6 & 3 & 4 & 1 & 2 & 15 & 16 & 13 & 14 & 11 & 12 & 9 & 10 \\
\hline
\end{tabular}
\end{center}

Table 1: Coordinates of the vertices in sets \(X^{(1)} \), \(X^{(2)} \), and \(X^{(3)} \), respectively.

\(P_{\infty}^{n-1} \) and consider \(X^{(n)} \). Partition the set \([2^{2n-1}]\) into \(2^{2n-2} \) blocks \(\{1, \ldots, 2^{2n-2}\} \), \(\{2^{2n-2} + 1, \ldots, 2^{2n-2} + 1\} \), \ldots, \(\{2^{2n-1} - 2^{2n-2} + 1, \ldots, 2^{2n-1}\} \). Let \(x_{i}^{(n)} \), \(x_{j}^{(n)} \), and \(x_{k}^{(n)} \) be pairwise different vertices from \(X^{(n)} \) and consider the following three cases, where again write each number \(m \in [2^{2n-1}] \) as \(m = p_m \cdot 2^{2n-2} + r_m \), where \(0 \leq p_m < 2^{2n-2} \) and \(r_m \in [2^{2n-2}] \).

To prove that no three vertices of \(X^{(n)} \) lie on a common geodesic, the following claim will be useful.

Claim A If \(n \geq 3 \) and if \(i \) and \(j \) are in the same block, then \(x_{i,n-1}^{(n)} < x_{j,n-1}^{(n)} \) if and only if \(x_{i,n}^{(n)} > x_{j,n}^{(n)} \).

Let \(n \geq 3 \) and let \(i = p_i \cdot 2^{2n-2} + r_i \) and \(j = p_j \cdot 2^{2n-2} + r_j \). Assume that \(x_{i,n-1}^{(n)} < x_{j,n-1}^{(n)} \). By the construction, \(x_{i,n-1}^{(n)} = x_{(p_i+1),n-1}^{(n-1)} \cdot 2^{2n-2} + x_{r_i,n-1}^{(n-1)} \) and \(x_{j,n-1}^{(n)} = x_{(p_j+1),n-1}^{(n-1)} \cdot 2^{2n-2} + x_{r_j,n-1}^{(n-1)} \). Since \(i \) and \(j \) are in the same block, that is, \(p_i = p_j \), we get that \(x_{i,n-1}^{(n)} - x_{i,n-1}^{(n)} = x_{r_j,n-1}^{(n-1)} - x_{r_i,n-1}^{(n-1)} \). As we have assume that \(x_{i,n-1}^{(n)} < x_{j,n-1}^{(n)} \), it follows that \(x_{r_j,n-1}^{(n-1)} > x_{r_i,n-1}^{(n-1)} \). Since \(x_{i,n}^{(n)} = x_{(p_i+1),n-1}^{(n-1)} \cdot 2^{2n-2} - x_{r_i,n-1}^{(n-1)} + 1 \) and \(x_{j,n}^{(n)} = x_{(p_j+1),n-1}^{(n-1)} \cdot 2^{2n-2} - x_{r_j,n-1}^{(n-1)} + 1 \), we conclude that \(x_{i,n}^{(n)} - x_{j,n}^{(n)} = x_{r_j,n-1}^{(n-1)} - x_{r_i,n-1}^{(n-1)} > 0 \). The reverse implication is proved along the same lines. This proves Claim A.

We now distinguish the following cases.

Case 1: \(\{p_i, p_j, p_k\} = \emptyset \).

In this case \(i, j, \) and \(k \) belong to the same block. Then by the induction hypothesis, the first \(n - 1 \) coordinates assure that \(x_{i}^{(n)} \), \(x_{j}^{(n)} \), and \(x_{k}^{(n)} \) do not lie on a
common geodesic.

Case 2: $|\{p_i, p_j, p_k\}| = 2$.

In this case we may assume without loss of generality that $p_i = p_j < p_k$. Further assuming without loss of generality that $r_i < r_j$, we have $x_{i,1}^{(n)} < x_{j,1}^{(n)} < x_{k,1}^{(n)}$. Hence if $x_i^{(n)}$, $x_j^{(n)}$, and $x_k^{(n)}$ lie on a common geodesic, then necessarily $x_j^{(n)}$ lies between $x_i^{(n)}$ and $x_k^{(n)}$. Suppose first that $x_{i,n-1}^{(n)} < x_{j,n-1}^{(n)} < x_{k,n-1}^{(n)}$. Then by Claim A we have $x_{j,n}^{(n)} < x_{i,n}^{(n)}$. Since $x_{i,n-1}^{(n)} < x_{k,n-1}^{(n)}$ and i, k are in different blocks, we have $x_{i,n}^{(n)} < x_{k,n}^{(n)}$. Therefore, $x_{j,n}^{(n)} < x_{i,n}^{(n)} < x_{k,n}^{(n)}$, so $x_i^{(n)}$, $x_j^{(n)}$, and $x_k^{(n)}$ do not lie on a common geodesic. By a parallel argument we come to the same conclusion if $x_{i,n-1}^{(n)} < x_{j,n-1}^{(n)} > x_{k,n-1}^{(n)}$ holds.

Case 3: $|\{p_i, p_j, p_k\}| = 3$.

Since p_i, p_j, and p_k are pairwise different, which means then we can consider their blocks. Considering the whole blocks as single contracted vertices, their components are the integral part of dividing components with 2^{2n-2} (the p values of the components). Since p values are obtained in the construction from a general position set of the $(n-1)$ dimensional grid, the induction hypothesis assures that these contracted vertices do not lie on a common geodesic, since this contracted vertices are part of a general position set in P_{∞}^n. This in turn implies that also $x_i^{(n)}$, $x_j^{(n)}$, and $x_k^{(n)}$ do not lie on a common geodesic.

3 Conclusion remarks

Recall that a subgraph H of a graph G is isometric if $d_H(u, v) = d_G(u, v)$ holds for each pair of vertices $u, v \in V(H)$. Since $P_i \Box \cdots \Box P_n$ is an isometric subgraph of P_{∞}^n, Theorem 1 immediately implies:

Corollary 3 If $n \geq 2$, and $i_1, \ldots, i_n \geq 2^{2n-1}$, then $\text{gp}(P_i \Box \cdots \Box P_n) = 2^{2n-1}$.

More generally, if a graph G contains an isometric grid $P_i \Box \cdots \Box P_n$, where each $i_j \geq 2^{2n-1}$, then $\text{gp}(G) \geq 2^{2n-1}$. For instance, since $P_i \Box \cdots \Box P_n$ is an isometric subgraph of $C_{2i_1} \Box \cdots \Box C_{2i_n}$, we have the following lower bound.

Corollary 4 If $n \geq 2$, and $i_1, \ldots, i_n \geq 2 \cdot 2^{2n-1}$, then $\text{gp}(C_{i_1} \Box \cdots \Box C_{i_n}) \geq 2^{2n-1}$.

From [10] we know that $\text{gp}(G \Box H) \geq \text{gp}(G) + \text{gp}(H) - 2$ holds for finite, connected graphs G and H. Since the general position number of a path is 2, Corollary 3 demonstrates that the difference in the inequality can be arbitrary large.

In [15] a formula for the number of general position sets of cardinality 4 in $P_r \Box P_s$ (that is, of largest general position sets) is determined for each $r, s \geq 2$.

5
Because of this result and Corollary 3, an interesting and intriguing problem is to determine the number of largest general position sets in $P_{i_1} \square \cdots \square P_{i_n}$, where $n \geq 3$ and $i_1, \ldots, i_n \geq 2^{n-1}$.

Acknowledgements

We acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0297 and projects J1-9109, J1-1693, N1-0095, N1-0108).

References

