Recognizing Hamming graphs in linear time and space

Wilfried Imricha, Sandi Klavžarb, c

a Department of Mathematics and Applied Geometry, Montanuniversität Leoben, A-8700 Leoben, Austria
b Department of Mathematics, PEF, University of Maribor, Koroska cesta 160, 2000 Maribor, Slovenia

Received 10 March 1995; revised 5 March 1997
Communicated by S. Zaks

Abstract

Hamming graphs are, by definition, the Cartesian product of complete graphs. In the bipartite case these graphs are hypercubes. We present an algorithm recognizing Hamming graphs in linear time and space. This improves a previous algorithm which was linear in time but not in space. This also favorably compares to the general decomposition algorithms of graphs with respect to the Cartesian product, none of which is linear. © 1997 Elsevier Science B.V.

Keywords: Hamming graphs; Design of algorithms; Analysis of algorithms

1. Introduction

Hamming graphs are a relevant class of graphs in Computer Science. By definition they are the Cartesian product of complete graphs and the problem of effectively recognizing whether a graph is a Hamming graph could be solved by prime factorization algorithms with respect to the Cartesian product. The fastest known algorithm for such a decomposition is due to Aurenhammer, Hagauer and Imrich [1] and is of time complexity $O(m \log n)$, where m is the number of edges and n the number of vertices of the graph considered. In [4] it was demonstrated how to reduce this complexity to $O(m)$ for the special case of hypercubes and in [8] this was generalized to all Hamming graphs. However, the space complexity of the latter algorithm is $O(n^2)$. In this paper we present an algorithm for recognizing Hamming graphs which is linear in both, time and space. We hope that this algorithm will help to further improve the general decomposition algorithms of graphs with respect to the Cartesian product.

All graphs considered in this note are finite undirected graphs without loops or multiple edges. Throughout the paper, for a given graph G, let n and m stand for the number of its vertices and edges, respectively. For a graph G and a vertex set $X \subset V(G)$ let (X) denote the subgraph of G induced by X.

The Cartesian product $G \square H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a,x)(b,y) \in E(G \square H)$ whenever $ab \in E(G)$ and $xy \in E(H)$. The Cartesian product is commutative and associative in an obvious way and has the one-vertex graph K_1 as a unit. We also recall that, up to isomorphism, each connected graph can be uniquely written as a Cartesian product of prime graphs [11,12].
As already mentioned, a Hamming graph is the Cartesian product of complete graphs. In the special case when all the factors are isomorphic to the graph K_2 we obtain hypercubes. Many characterizations of Hamming graphs are known, we refer to [2,3] and references there. In addition, several other classes of graphs closely related to Hamming graphs were also studied, cf. [13–15] and references therein.

As we work with graphs on n vertices and m edges our input consists of $n + m$ integers and to encode them in the binary representation we need $O(n \log n) + O(m \log m) = O((n + m) \log n)$ bits. In addition, all operations will be performed on such integers, i.e. on words of length $O(\log n)$. Following the customary scheme for graph algorithms we will henceforth omit the factor $\log n$, cf. [9]. In other words, we analyse algorithms in the arithmetic model, cf. [7]. We will return to the binary representation in the last section where it will be observed that in the case of hypercubes the so-called compression procedure is not essential for the space complexity.

2. The algorithm

For our purposes the following alternative definition of Hamming graphs will be convenient.

Let r_1, r_2, \ldots, r_t be given integers ≥ 2 and let V be the set of t-tuples $a_1a_2 \ldots a_t$ with $0 \leq a_i \leq r_i - 1$. These t-tuples will be the set of vertices of our Hamming graph. We note that there are $n = \prod_{i=1}^{t} r_i$ such t-tuples. We connect any two t-tuples $a_1a_2 \ldots a_t$ and $b_1b_2 \ldots b_t$ by an edge if they differ in exactly one place, i.e. if there is a j such that $a_j \neq b_j$ but $a_i = b_i$ for $i \neq j$. Let E be the set of such edges. It is straightforward to see that the graph $H = (V, E)$ is a Hamming graph. The corresponding labelling of the vertices of H is called a Hamming labelling.

The algorithm we are going to present consists of three parts. First, we check some basic properties of a given graph G to be a Hamming graph and prepare data structures for the next parts. Then, in the procedure Labelling, we label vertices of G with strings of length t, where t is the expected number of factors. Finally, in the procedure Compression we shorten these labels to only two coordinates and verify whether G is indeed a Hamming graph.

Clearly, $H = K_{r_1} \square K_{r_2} \square \cdots \square K_{r_t}$ is an $(r_1 + r_2 + \cdots + r_t - t)$-regular graph on $r_1 r_2 \cdots r_t$ vertices. Thus H has $\frac{1}{2} r_1 r_2 \cdots r_t (r_1 + r_2 + \cdots + r_t - t)$ edges. Note also that the neighborhood of a vertex of H induces a disjoint union of complete graphs. With these observations we can define the following procedure. We assume that the input graph G is connected and given in its adjacency list representation.

Procedure Initialization

1. Choose an arbitrary vertex v_0 of G.
2. Rename the vertices of G and adjust the adjacency list according to the BFS order with respect to v_0.
3. Arrange the vertices in levels L_0, L_1, \ldots, L_k such that L_i contains all vertices of distance i from v_0.
4. Find the connected components of the subgraph of G spanned by the vertices of L_1 and sort them by their sizes. Let these components be C_1, C_2, \ldots, C_t with $r_1 - 1, r_2 - 2, \ldots, r_t - 1$ vertices, respectively.
5. If any of the subgraphs induced by the C_i is not complete then reject.
6. If $n \neq \prod_{i=1}^{t} r_i$ then reject.
7. If $m = \frac{1}{2} \sum_{i=1}^{t} (r_i(r_i - 1) \prod_{j \neq i}^{t} r_j)$ then reject.

Suppose for a moment that G is a Hamming graph. Then we can say that L_k consists of all those t-tuples $a_1a_2 \ldots a_t$ in which exactly k of the a_i are $\neq 0$. In particular, L_0 consists only of v_0 and L_1 of all neighbors of v_0.

For the labelling procedure we state the next three straightforward lemmas, cf. [8].

Lemma 1. Let π be a permutation of $\{0, 1, \ldots, r_i - 1\}$. If

$h : v \mapsto a_1a_2 \ldots a_t$

is a Hamming labelling of H, then

$\pi h : v \mapsto \pi a_1a_2 \ldots a_t$

is also a Hamming labelling.

Lemma 2. Let $1 \leq i < j \leq t$ and h be given as in Lemma 1. Then

$h_{ij} : v \mapsto a_1a_2 \ldots a_{i-1}a_ja_{j+1} \ldots a_{t-1}a_t$

is also a Hamming labelling.
Lemma 3. Let \(u = a_1a_2\ldots a_t \in L_k, k \geq 1 \). Then every neighbor \(v \) of \(u \) in \(L_{k-1} \) has exactly one more vanishing component than \(u \).

Also, if \(k \geq 2 \) the vertex \(u \) has at least two neighbors \(v, w \) in \(L_{k-1} \) and they differ in exactly two coordinates.

Moreover, if \(v = b_1b_2\ldots b_t \) and \(w = c_1c_2\ldots c_t \) then \(a_i = \max \{ b_i, c_i \} \) for \(i = 1, \ldots , t \).

According to the above lemmas, we can assign labels to the vertices of \(G \) by the following procedure.

Procedure Labelling
1. Label \(v_0 \) with a vector of length \(t \) containing only zeros.
2. Label the vertices of \(G \) with vectors of the form \(0\ldots 0a_0\ldots 0 \), i.e. vectors of length \(t \) in which only the \(i \)-th coordinate \(a_i \) is different from zero, but where \(a_i \) assumes all values between 1 and \(r_i - 1 \).
3. For each vertex \(u \) in levels \(L_i, 2 \leq i \leq k \), select any two vertices adjacent to \(u \), say \(u^1 \) and \(u^2 \), in level \(L_{i-1} \). If there are no such vertices then reject.
4. Suppose all vertices in \(L_j, 1 \leq j < k \), have already been labelled. Choose an unlabelled vertex \(u \) in \(L_{j+1} \). Let the labels of \(u^1 \) and \(u^2 \) be \(b_1b_2\ldots b_t \) and \(c_1c_2\ldots c_t \), respectively. Setting \(a_i = \max \{ b_i, c_i \} \) we obtain a label \(a_1a_2\ldots a_t \) for \(u \).

It follows immediately from Lemmas 1–3 that the labelling algorithm, applied to a Hamming graph \(G \), yields a Hamming labelling of \(G \).

We next describe how to compress the labels obtained in the previous procedure to only two coordinates. Consider the graph

\[H = K_{r_1} \square K_{r_2} \square \cdots \square K_{r_t} \]

and set

\[H_1 = K_{r_1} \square K_{r_2} \square \cdots \]

and

\[H_2 = K_{r_2} \square K_{r_4} \square \cdots \]

In other words, \(H_1 \) and \(H_2 \) are the subproducts of \(H \) with odd indexed and even indexed factors, respectively. As the Cartesian product is associative and commutative we have \(H = H_1 \square H_2 \).

Procedure Compression
1. Let \(G_1 \) be the subgraph of \(G \) induced by the vertices with all even coordinates equal to zero and let \(G_2 \) be the subgraph of \(G \) induced by the vertices with all odd coordinates equal to zero.
2. If \(G_1 \) is not isomorphic to \(H_1 \), or \(G_2 \) is not isomorphic to \(H_2 \), then reject.
3. Label the vertices of \(G_1 \) with \(\{ 1, 2, \ldots , |G_1| \} \), the vertices of \(G_2 \) with \(\{ 1, 2, \ldots , |G_2| \} \) and represent \(G_1 \) and \(G_2 \) by their adjacency matrices.
4. Label each vertex \(v \) of \(G \) by two coordinates as follows. If \(v \) labelled \(a_1a_2\ldots a_t \), let its first coordinate be the vertex of \(G_1 \) corresponding to label \(a_10a_20\ldots \) and let its second coordinate be the vertex of \(G_2 \) corresponding to the label \(0a_20a_4\ldots \).
5. For each edge \(uv \) of \(G \) check whether it is in product. More precisely, if the label of \(u \) is \(i'j' \) and the label of \(v \) is \(i'j' \), then check if either \(i = i' \) and \(j \) is adjacent (in \(G_2 \)) to \(j' \), or \(j = j' \) and \(i \) is adjacent (in \(G_1 \)) to \(i' \).

We can thus summarize our algorithm as follows.

The Hamming Graph Algorithm

Input: A connected graph \(G \) in its adjacency list representation.

Output: A Hamming labelling of \(G \) if it exists, rejection otherwise.

1. Initialization
2. Labelling
3. Compression

Correctness of the algorithm follows from the above discussion.

We next consider the time and the space complexity of the algorithm. Clearly all the steps of the procedure Initialization as well as Steps 1 and 2 of the procedure Labelling can be done in \(O(m) \) time and space.

For Step 3 of Labelling we first remember for each vertex its level and then we go through adjacency list and find two appropriate vertices. Therefore the label for a vertex \(u \) in Step 4 can be computed in time \(O(t) \). It follows that the complexity of this step is \(O(nt) \).

Since every vertex of \(G \) has at least \(t \) neighbors we infer \(nt \leq 2m \). Hence, \(O(nt) = O(m) \). We conclude that the procedure Labelling can also be performed in \(O(m) \) time and space.
Finally to the compression procedure. The selection of
vertices for G_1 and G_2 takes $O(mt) = O(m)$ time.
Suppose now that $t = 2s$. Then since $r_1 \leq r_2 \leq \cdots \leq r_{2s}$, we have
\[r_1^2 \cdot r_3^2 \cdot \cdots \cdot r_{2s-3}^2 \cdot r_{2s-1}^2 \cdot r_{2s} \]
\[\leq r_1 \cdot r_2 \cdot r_3 \cdot \cdots \cdot r_{2s-1} \cdot r_{2s} \]
\[\leq 2m \]
and similarly
\[r_2^2 \cdot r_4^2 \cdot \cdots \cdot r_{2s-2}^2 \cdot r_{2s} \]
\[\leq r_2 \cdot r_3 \cdot r_4 \cdot \cdots \cdot r_{2s-1} \cdot r_{2s} \]
\[\leq 2r_2(r_1 + \cdots + r_{2s} - 2s) \]
\[\leq 2m. \]

Analogously we proceed if t is odd. Thus, in all cases
we have $|V(G_1)| = O(\sqrt{m})$ and $|V(G_2)| = O(\sqrt{m})$.
For the adjacency matrices of G_1 and G_2 we thus need
$O(m)$ space. This means that for Step 2 of the
procedure Compression we can use the recognition algo-
rithm for Hamming graphs from [8] which is linear
in time but uses an adjacency matrix as an input.

Next, projections from Step 4 can clearly be computed
in $O(mt)$ time. Finally, since we have only two
coordinates and G_1 and G_2 are represented by
their adjacency matrices, checking for an edge in Step 5
can be done in $O(1)$ time. We have thus proved:

Theorem 4. For a given graph G on n vertices and m
edges one can decide in $O(m)$ time and $O(m)$ space
whether G is a Hamming graph. Both complexities are
optimal.

3. Concluding remarks

In this paper we have given a linear time and space
algorithm for recognizing Hamming graphs. A sim-
pler linear time algorithm is given in [8], but its
space complexity is $O(n^2)$. This space is needed if
we wish to find out in constant time whether two ver-
tices labelled with strings of length t are connected
by an edge. Without the adjacency matrix this would
yield to time complexity $O(mt)$ which is in general
$O(m \log n)$ – the complexity of the algorithm from
[1] for the prime factor decomposition with respect
to the Cartesian product. Thus the main insight of the
present algorithm is the compression procedure, which
reduces the number of coordinates.

In the case of hypercubes, though, the compression
procedure is not needed, as pointed by one of the
referees. Indeed, by our assumption comparing two
$O(\log n)$ bit integers takes constant time. But then we
can also test in constant time whether two labels ob-
tained in the labelling procedure differ in exactly one
bit. (We first transform the $\log n$ bit labels to $\log n$
bit integers and then use the XOR and AND boolean
operations.) We cannot simplify our algorithm in the
general case, because we need to compare strings con-
sisting of $O(\log n)$ integers, each of size $O(\log n)$.
The above approach would then add a factor $\log n$
to the time complexity.

Finally, we wish to add that there is a general re-
lated result which asserts that if a given graph algo-
rithm runs in linear time and uses $O(n^2)$ space, (i.e.
the matrix representation), then the algorithm can be
simulated in linear space and expected linear time.
The expected linear time follows from reference [5],
while reference [6] gives the same result but also
ensures high probability. The main insight of this note
is thus that in the case of Hamming graphs we are able to
find an algorithm which runs in deterministic linear
time.

Acknowledgement

We wish to thank the referees for helpful remarks.

References

[1] F. Aurenhammer, J. Hagauer and W. Imrich, Cartesian
graph factorization at logarithmic cost per edge, Comput.
[3] H.-J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median
graphs and algebra, J. Graph Theory 18 (1994) 681–703.
[4] K.V.S. Bhat, On the complexity of testing a graph for n-
Heide, H. Rohnert and R.E. Tarjan, Dynamic perfect hashing:
Upper and lower bounds, SIAM J. Comput. 23 (1994) 738–
761.
Algorithms and Combinatorial Optimization, Algorithms