Wiener–Type Invariants of Trees and Their Relation

Ivan Gutman
Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Yugoslavia;
e-mail: gutman@knez.uis.kg.ac.yu

Andrey A. Dobrynin
Sobolev Institute of Math., Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
e-mail: dobr@math.nsc.ru

Sandi Klavžar
Department of Mathematics, PeF, University of Maribor Koroška cesta 160, 2000 Maribor, Slovenia
e-mail: sandi.klavzar@uni-mb.si

Ljiljana Pavlović
Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Yugoslavia;

July 15, 2002

Abstract

The distance $d(u,v|G)$ between the vertices u and v of a (connected) graph G is the length (= number of edges) of a shortest path connecting u and v. The Wiener number $W(G)$ of G is the sum of distances between all pairs of vertices of G. We consider a class of Wiener–type invariants $W_{\lambda}(G)$, defined as the sum of the terms $d(u,v|G)^\lambda$ over all pairs of vertices of G. Several special cases of $W_{\lambda}(G)$, namely the invariants for $\lambda = +1$ (the original Wiener number) as well as for $\lambda = -2, -1, +1/2, +2$ and $+3$, were previously studied in the chemical literature, and found applications as molecular structure descriptors. We modify the definition of $W_{\lambda}(G)$ so that it extends also to non-connected graphs and then deduce the identity $W_{\lambda+1}(T) = (n-1)W_{\lambda}(T) - \sum W_{\lambda}(T-e)$, valid for any n-vertex tree T, with the summation embracing all edges e of T.
1 Introduction

In this paper we are concerned with finite undirected graphs. The metric on these graphs is defined in the usual manner [1]: Let \(u \) and \(v \) be two vertices belonging to the same component of the graph \(G \). The distance \(d(u, v|G) \) between the vertices \(u \) and \(v \) is the length (= number of edges) of a shortest path connecting \(u \) and \(v \). If \(u = v \), then \(d(u, v|G) = 0 \). If \(u \) and \(v \) belong to different components of \(G \), then the distance between them is not determined.

Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \), and let \(|V(G)| = n \) and \(|E(G)| = m \).

The Wiener number (or Wiener index) of a connected graph \(G \) is defined as [15]

\[
W = W(G) = \sum_{\{u,v\} \subseteq V(G) \times V(G)} d(u, v|G) .
\]

In words: the Wiener number is the sum of distances between all pairs of vertices of the respective graph. Therefore, \(\frac{n(n-1)}{2} W(G) \) is just the average distance between the vertices of the graph \(G \).

The graph invariant \(W \) was introduced in 1947 by Wiener [15], who used it for modeling the shape of organic molecules and for calculating several of their physico–chemical properties. Mathematical research on \(W \) started in 1976 [6] and since then this distance–based quantity was much studied; for details of the theory of the Wiener number and for an exhaustive list of references see the recent reviews [4, 5].

The definition (1) of the Wiener number requires that the graph \(G \) be connected. As a consequence, practically the entire research on \(W \), done so far [4, 5], was restricted to connected graphs. Yet, this restriction can easily be overcome.

Denote by \(d(G, k) \) the number of pairs of vertices of the graph \(G \) that are at distance \(k \), and note that this quantity is well defined for both connected and disconnected graphs. In particular, \(d(G, 0) = n \) and \(d(G, 1) = m \). Now, evidently, the right–hand side of Eq. (1) can be rewritten as \(\sum_{k \geq 1} k d(G, k) \), which hints towards the possibility to define the Wiener number of a graph \(G \) as

\[
W = W(G) = \sum_{k \geq 1} k d(G, k) .
\]

If \(G \) is a connected graph, then Eq. (2) reduces to Eq. (1). If \(G \) is disconnected, then the right–hand side of (1) is ill-determined, which is not the case with the right–hand side of Eq. (2).
From (2) follows that if G is a graph consisting of components G_1, G_2, \ldots, G_p, then
\[W(G) = W(G_1) + W(G_2) + \cdots + W(G_p) . \] (3)

An immediate generalization of the Wiener number is
\[W_\lambda = W_\lambda(G) = \sum_{k \geq 1} d(G, k) k^\lambda \] (4)

where λ is some real (or complex) number. For connected graphs formula (4) is tantamount to
\[W_\lambda = W_\lambda(G) = \sum_{\{u, v\} \subseteq V(G) \times V(G)} d(u, v|G)^\lambda . \]

In an explicit form the Wiener–type graph invariant W_λ was first put forward in the works [7] and [8]. However, various of its special cases have independently been considered in the chemical literature, where they found considerable applications. Thus W_{-2} and W_{-1}, named Harary index and reciprocal Wiener index, were introduced in the papers [11] and [3], respectively, and eventually studied in numerous subsequent publications. The case $\lambda = \frac{1}{2}$ was analyzed in the article [16]. The so-called “hyper–Wiener index” [12] was shown [10] to be equal to $\frac{1}{2} W_2 + \frac{1}{2} W_1$. The so-called “Tratch–Stankevich–Zefirov index” [13] was shown [9] to be equal to $\frac{1}{2} W_3 + \frac{1}{2} W_2 + \frac{1}{3} W_1$. (Recall that the hyper–Wiener and Tratch–Stankevich–Zefirov indices were originally defined in terms completely different from the presently considered Wiener–type invariants; for details see [12, 13].) More details on the chemical applications and interconnections of various distance–based graph invariants are found in the review [2] and the book [14].

2 Two identities for distances in trees

A tree is a connected acyclic graph. Any two vertices of a tree are connected by a unique path; the number of edges of this unique path is the distance between the respective two vertices.

Let T be a tree on n vertices and let e be one of its edges. The subgraph $T - e$ is obtained by deleting from T the edge e. Thus, $V(T - e) = V(T)$.

The subgraph $T - e$ is disconnected, possessing two components. Denote them by $T_1(e)$ and $T_2(e)$, and let the number of their vertices be $n_1(e)$ and $n_2(e)$, respectively, $n_1(e) + n_2(e) = |V(T - e)| = n$.

3
Lemma 1. Let T be a tree on n vertices. Then
\[(n - 1 - k) d(T, k) = \sum_{e \in E(T)} d(T - e, k) \tag{5}\]
holds for all $k = 0, 1, 2, \ldots$.

Proof. Consider the difference $d(T, k) - d(T - e, k)$. In view of the uniqueness of the path connecting any given pair of vertices of a tree, any two vertices of T, connected by a path that contains the edge e, belong to different components of $T - e$. Consequently, the difference $d(T, k) - d(T - e, k)$ counts the pairs of vertices of T that are at distance k and whose connecting path contains the edge e. By summing this difference over all edges of T we will count any pair of vertices of T at distance k. Furthermore, every such pair will be counted exactly k times, because there are exactly k edges in the path connecting them. Hence,
\[
\sum_{e \in E(T)} [d(T, k) - d(T - e, k)] = k d(T, k) .
\]
Formula (5) follows now by taking into account that T has $n - 1$ edges. \qed

Lemma 2 is deduced in a fully analogous manner. Here u stands for a vertex of the tree T and $T - u$ is the subgraph obtained by deleting u (together with its incident edges) from T.

Lemma 2. Let T be a tree on n vertices. Then
\[(n - 1 - k) d(T, k) = \sum_{u \in V(T)} d(T - u, k) \tag{5}\]
holds for all $k = 0, 1, 2, \ldots$.

Theorem 3. Let T be a tree on n vertices. Let λ be a real (or complex) number. Then
\[W_{\lambda+1}(T) = (n - 1) W_\lambda(T) - \sum_{e \in E(T)} W_\lambda(T - e) . \tag{6}\]

Proof. By multiplying Eq. (5) by k^λ one obtains
\[d(T, k) k^{\lambda+1} = (n - 1) d(T, k) k^\lambda - \sum_{e \in E(T)} d(T - e, k) k^\lambda
\]
which summed over all $k \geq 1$ and in view of Eq. (4) yields (6). \qed
In an analogous manner, from Lemma 2 follows:

Theorem 4. Let T be a tree on n vertices. Let λ be a real (or complex) number. Then

$$W_{\lambda+1}(T) = (n - 1) W_\lambda(T) - \sum_{u \in V(T)} W_\lambda(T - u).$$

Remark. The identity (5) can be rewritten as

$$(m - k) d(F, k) = \sum_{e \in E(F)} d(F - e, k),$$

in which case it holds for any forest F (= acyclic graph, not necessarily connected), with $m \leq n - 1$ edges. Analogously, relation (6) then becomes $W_{\lambda+1}(F) = m W_\lambda(F) - \sum_{e \in E(F)} W_\lambda(F - e).$

3 Applications of relation (6)

First of all, using Eq. (3) and the notation defined above, Eq. (6) can be rewritten as

$$W_{\lambda+1}(T) = (n - 1) W_\lambda(T) - \sum_{e \in E(T)} [W_\lambda(T_1(e)) + W_\lambda(T_2(e))].$$

(7)

Note that all graphs occurring in formula (7) are connected.

For any connected n-vertex graph G, $W_0(G) = \binom{n}{2}$.

Formulas (6) holds for any value of λ. By setting $\lambda = 0$ and by taking into account that $n_1(e) + n_2(e) = n$, we obtain:

$$W_1(T) = (n - 1) W_0(T) - \sum_e [W_0(T_1(e)) + W_0(T_2(e))].$$

$$= (n - 1) \binom{n}{2} - \sum_e \left[\binom{n_1(e)}{2} + \binom{n_2(e)}{2} \right]$$

$$= \frac{1}{2} n (n - 1)^2 - \frac{1}{2} \sum_e [n_1(e)^2 + n_2(e)^2 - (n_1(e) + n_2(e))].$$

$$= \frac{1}{2} n (n - 1)^2 - \frac{1}{2} \sum_e [n^2 - n - 2n_1(e)n_2(e)].$$
\[W(T) = \sum_{e} n_1(e) n_2(e) \]

which finally yields

\[W(T) = \sum_{e} n_1(e) n_2(e) \]

a result first reported by Wiener himself [15]. Thus, the relation (6) may be viewed as a generalization of the Wiener formula (8).

The \(n \)-vertex tree possessing a maximum number (\(= n - 1 \)) vertices of degree 1 is called the star (\(S_n \)). The \(n \)-vertex tree possessing a minimum number (\(= 2 \)) vertices of degree 1 is the path graph (\(P_n \)). In the set of all \(n \)-vertex trees, \(S_n \) and \(P_n \) usually have extremal properties. It has been shown elsewhere [7] that for \(T_n \) being any \(n \)-vertex tree different from \(S_n \) and \(P_n \), and for any \(\lambda > 0 \),

\[W_\lambda(S_n) < W_\lambda(T_n) < W_\lambda(P_n) . \]

If \(\lambda < 0 \), then in the above inequalities “less than” has to be exchanged into “greater than”.

Because \(d(S_n, k) = 0 \) for \(k \geq 3 \), one directly gets

\[W_\lambda(S_n) = n - 1 + \left(\frac{n - 1}{2} \right)^2 \lambda . \]

The calculation of the Wiener–type invariants of \(P_n \) is less easy. By means of formulas (6) or (7) the Wiener–type invariants of a tree can be computed recursively. This is especially efficient if the respective tree possesses some structural regularity. For instance, for \(P_n \), formula (7) reduces to

\[W_{\lambda+1}(P_n) = (n - 1) W_\lambda(P_n) - 2 \sum_{i=1}^{n-1} W_\lambda(P_i) . \]

We start with \(\lambda = 0 \) and the obvious relation \(W_0(P_n) = \binom{n}{2} \). Then, by applying (9),

\[W_1(P_n) = \binom{n}{2} - 2 \sum_{i=1}^{n-1} \binom{i}{2} = \binom{n + 1}{3} . \]

For \(\lambda = 1, 2, \ldots , 5 \) analogous calculations yield

\[W_2(P_n) = \frac{n}{2} \binom{n + 1}{3} \quad W_3(P_n) = \frac{3n^2 - 2}{10} \binom{n + 1}{3} \]

(11)
\[W_4(P_n) = \frac{n(2n^2 - 3)}{10} \binom{n + 1}{3} \quad W_5(P_n) = \frac{(n^2 - 2)(2n^2 - 1)}{14} \binom{n + 1}{3} \]

\[W_6(P_n) = \frac{n(n^2 - 2)(3n^2 - 5)}{28} \binom{n + 1}{3}. \]

By induction it can be shown that for \(\lambda \) being a positive integer, \(W_\lambda(P_n) \) has the following properties:

- \(W_\lambda(P_n) \) is a polynomial in the variable \(\lambda \), of degree \(n + 2 \);
- if \(n \) is even/odd, the coefficients at odd/even terms are 0;
- the nonzero coefficients alternate in sign.

Using expressions (10) and (11) one can immediately check that

\[\frac{1}{2} W_2(P_n) + \frac{1}{2} W_1(P_n) = \binom{n + 2}{4} \]

and

\[\frac{1}{6} W_3(P_n) + \frac{1}{2} W_2(P_n) + \frac{1}{3} W_1(P_n) = \binom{n + 3}{5} \]

Thus we arrive at the remarkable result that the Wiener number [15], the hyper–Wiener index [12] and the Tratch–Stankevich–Zefirov index [13] of the \(n \)-vertex path graph are given by

\[\binom{n + 1}{3}, \quad \binom{n + 2}{4}, \quad \binom{n + 3}{5} \]

respectively.

Acknowledgements

Parts of this research were supported by the Ministry of Science and Technology of Serbia, under the grant 1389, by the Russian Foundation for Basic Research (project code 02-01-00039), and by the Ministry of Education, Science and Sport of Slovenia under the grant 0101–504.

References

