AREA-PERIMETER RELATIONS FOR TWO-DIMENSIONAL LATTICES

EDWARD A. BENDER, California Institute of Technology

1. Introduction. Minkowski’s theorem for the two-dimensional unit square lattice states that any convex domain of area greater than four which is symmetric about a lattice point, contains at least one other lattice point. In this note we shall prove that any convex domain whose area is greater than half its perimeter, contains a lattice point. Thus, if D is a convex domain containing no lattice points, we have the inequality

$$A(D) \leq \frac{1}{2} P(D),$$

where $A(D)$ is the area of D and $P(D)$ its perimeter. Inequality (1.1) may be stated in the following equivalent form: The supremum of $A(D)/P(D)$ over all convex domains D containing no lattice points is less than or equal to one half. We shall, in fact, prove a stronger and more general result.

THEOREM. Let $\Lambda = \Lambda(\omega_1, \omega_2)$ be a lattice generated by two noncollinear vectors ω_1 and ω_2 making an angle θ with one another, where $0 < \theta < \pi$, and let $c(\Lambda)$ be the supremum of $A(D)/P(D)$ over all convex domains D containing no points of Λ. Then if $|\omega_1| \leq |\omega_2|$ we have the inequalities

$$\frac{1}{2} |\omega_2| \sin \theta \leq c(\Lambda) \leq \frac{1}{2} \max \{|\omega_1|, |\omega_2| \sin \theta\}.$$

Note that for rectangular lattices the inequalities in (1.2) determine $c(\Lambda)$ exactly and give us $c(\Lambda) = \frac{1}{2} \max \{|\omega_1|, |\omega_2| \sin \theta\}$.

The lower bound in (1.2) is easily derived by considering the parallelogram $D_n = \{(x, y) | 0 < x < n, 0 < y < 1\}$, the coordinates (x, y) being relative to the basis ω_1, ω_2. As $n \to \infty$ it is clear that $A(D_n)/P(D_n) \to \frac{1}{2} |\omega_2| \sin \theta$, and this implies $c(\Lambda) \geq \frac{1}{2} |\omega_2| \sin \theta$.

2. The upper bound for $c(\Lambda)$. The upper bound for $c(\Lambda)$ will be established by reducing the problem to rectangular lattices and symmetric domains.

Let $\omega'_1 = \omega_1$, and let ω'_2 be a vector of length $|\omega_2| \sin \theta$, perpendicular to ω_1. (There are two such vectors, but they differ only in sign.) Let $\Lambda' = \Lambda(\omega'_1, \omega'_2)$ denote the rectangular lattice determined by the basis vectors ω'_1, ω'_2. We shall prove the following lemma.

Lemma 1. If D is a convex domain containing no points of Λ, there exists another convex domain D' containing no points of Λ', such that

(a) $P(D') \leq P(D)$, $A(D') = A(D),$

(b) D' is symmetric about the lines $x' = \frac{1}{2}$, $y' = \frac{1}{2}$, the coordinates x' and y' being relative to the basis ω'_1, ω'_2.

Proof. Let D^0 be the region obtained from D by symmetrization with respect to the line $x' = \frac{1}{2}$. Symmetrization preserves convexity and areas and does not increase perimeters. Therefore D^0 is convex, $A(D^0) = A(D)$, and $P(D^0) \leq P(D)$.

742
We shall show now that D^0 contains no points of the lattice Λ'. If D^0 contained a lattice point of Λ', say the point $m\omega'_1 + n\omega'_2$, then the line $y' = n$ (perpendicular to ω_2) would intersect D^0 in a line segment of length greater than 1. The same line would also intersect D in a line segment of the same length and this line segment, in turn, would contain a lattice point of Λ, contradicting the hypothesis of the lemma. Therefore D^0 contains no lattice points of Λ'.

We can argue now with D^0 as we did with D, except that we symmetrize D^0 with respect to the line $y' = \frac{1}{2}$. The symmetrization of D^0 gives us a domain D' with the properties described in the lemma.

In view of Lemma 1, to deduce the upper bound in (1.2) it suffices to prove

\begin{figure}[h]
\centering
\begin{tikzpicture}
\draw[thick] (-1,0) -- (3,0) -- (3,2) -- (-1,2) -- (-1,0);
\draw[thick] (0,-1) -- (0,2);
\draw[thick] (1,-1) -- (1,2);
\draw[thick] (2,-1) -- (2,2);
\fill[black] (0,0) circle (0.1);\fill[black] (0,1) circle (0.1);\fill[black] (0,2) circle (0.1);
\fill[black] (1,0) circle (0.1);\fill[black] (1,1) circle (0.1);\fill[black] (1,2) circle (0.1);
\fill[black] (2,0) circle (0.1);\fill[black] (2,1) circle (0.1);\fill[black] (2,2) circle (0.1);
\fill[black] (-1,0) circle (0.1);\fill[black] (-1,1) circle (0.1);\fill[black] (-1,2) circle (0.1);
\fill[black] (-0.5,0) circle (0.1);\fill[black] (-0.5,1) circle (0.1);\fill[black] (-0.5,2) circle (0.1);
\fill[black] (-1,-1) circle (0.1);\fill[black] (-1,-0.5) circle (0.1);\fill[black] (-1,0) circle (0.1);
\fill[black] (0,-1) circle (0.1);\fill[black] (0,-0.5) circle (0.1);\fill[black] (0,0) circle (0.1);
\fill[black] (1,-1) circle (0.1);\fill[black] (1,-0.5) circle (0.1);\fill[black] (1,0) circle (0.1);
\fill[black] (2,-1) circle (0.1);\fill[black] (2,-0.5) circle (0.1);\fill[black] (2,0) circle (0.1);
\end{tikzpicture}
\caption{}
\end{figure}

Lemma 2. Let $\Lambda = \Lambda(\omega_1, \omega_2)$ be a rectangular lattice. If D is a convex domain, symmetric about the lines $x = \frac{1}{2}$ and $y = \frac{1}{2}$ (coordinates relative to the basis ω_1, ω_2) and if D contains no points of Λ, then

\[
\frac{A(D)}{P(D)} \leq \frac{1}{2} \max \{ |\omega_1|, |\omega_2| \}.
\]

Proof. Let $a = \sup \{ x : (x, \frac{1}{2}) \in D \}$, and $b = \sup \{ y : (\frac{1}{2}, y) \in D \}$, where the coordinates x and y are relative to the basis ω_1, ω_2. We consider three cases, depending on the sizes of a and b.

Case 1. $a \leq \frac{1}{2}$ and $b \leq \frac{3}{2}$. By the isoperimetric inequality we have

\[
(2.1) \quad \frac{A(D)}{P(D)} \leq \sqrt{\frac{A(D)}{4\pi}}.
\]
We now obtain an upper bound for $A(D)$. In this case, D lies within the cross-shaped region C shown in Figure 1. Therefore $A(D) \leq A(C) = 3|\omega_1| |\omega_2|$, and (2.1) becomes
\[
\frac{A(D)}{P(D)} \leq \frac{1}{2} \sqrt{\frac{3}{\pi}} \sqrt{(|\omega_1| |\omega_2|)} < \frac{1}{2} \sqrt{(|\omega_1| |\omega_2|)} \leq \frac{1}{2} \max \{|\omega_1|, |\omega_2|\}.
\]

![Figure 2](image)

Fig. 2

Case 2. $a > \frac{3}{2}$. We consider D', the quarter of D with $x \geq \frac{3}{2}$ and $y \geq \frac{1}{3}$. We now obtain an upper bound for $A(D')$. Since D is convex, the region D' lies below some line through $(1, 1)$ with nonpositive slope as shown in Figure 2. Therefore D' is a subset of the shaded region B shown in Figure 2. Since $a > \frac{3}{2}$ the region B has an area not exceeding that of the rectangle $PQRS$. Therefore $A(B) \leq \frac{1}{3} |\omega_2| \cdot (a - \frac{1}{3}) |\omega_1|$. Thus
\[
A(D) = 4A(D') \leq 4A(B) \leq 2 |\omega_1| |\omega_2| (a - \frac{1}{3}).
\]

But since $P(D) \geq 4 |\omega_1| (a - \frac{1}{3})$ we have the inequality
\[
\frac{A(D)}{P(D)} \leq \frac{1}{2} |\omega_2|.
\]

This proves Lemma 2 when $a > \frac{3}{2}$.

Case 3. $b > \frac{3}{4}$. The argument in this case is similar to Case 2 and we obtain the inequality
\[
\frac{A(D)}{P(D)} \leq \frac{1}{2} |\omega_1|.
\]

I am greatly indebted to T. M. Apostol for help in the preparation of this paper.