SA Note on Self-Maps Inducing Identity Automorphisms of Homology Groups

Petar Pavešić

Department of Mathematics, University of Ljubljana
Jadranska, 19, Ljubljana, Slovenia
e-mail: petar.pavesic@uni-lj.si

Abstract

A normal series for the group $\text{Aut}_\ast(X)$ of self-homotopy equivalences which induce identity automorphisms of homology groups is derived when X is a countable, simply-connected and finite-dimensional CW-complex.

0 Introduction

Let X be a pointed CW-complex and let $\text{Aut}(X)$ denote the set of homotopy classes of self-maps of X that are homotopy equivalences. This set is a group, called group of self-homotopy equivalences, with respect to the operation induced by the composition of maps. The excellent survey paper [1] gives an idea of the extensive literature on these groups. Still, their structure is very often unknown, and one of the main difficulties originates from the fact that a cellular (or even homology) decomposition of X does not lead to a corresponding decomposition of $\text{Aut}(X)$. In fact, there are elementary examples when a self-equivalence of a space cannot be represented by a cellular map whose restrictions on skeletons are also self-equivalences (cf. Remark 1.1 of [6]).

The main purpose of this note is to show that the situation is more favorable when dealing with $\text{Aut}_\ast(X)$, the subgroup of $\text{Aut}(X)$ consisting of classes that induce identity automorphisms of homology groups (or, in other words, with the kernel of the obvious representation $\text{Aut}(X) \to \text{Aut}H_\ast(X)$). The crucial step is Theorem 1.4 that for a large class of spaces X any element of $\text{Aut}_\ast(X)$ can be represented by a cellular map which yields a self-equivalence inducing identity on homology when restricted to any skeleton of X. With this fact at hand it is easy to derive a finite normal series for $\text{Aut}_\ast(X)$. The existence of such a normal series paves the way for a construction of a spectral sequence converging to $\text{Aut}_\ast(X)$ which we are going to consider in a forthcoming paper.

We wish to remark that much of this work was motivated by the proof of the main theorem in [4] and that we used similar arguments in proving our results.

1991 Mathematics Subject Classification. Primary: 55P10
1 A normal series for \(\text{Aut}_*(X)\)

Let \(\varphi: V \to A\) be a map from a wedge of \(n\)-dimensional \((n \geq 2)\) spheres \(V\) to an \(n\)-dimensional, 1-connected CW-complex \(A\), and let \(C_\varphi\) be the mapping cone of \(\varphi\). By Theorem 7.3’ of [3] for every self-map \(f\) of \(C_\varphi\) there are self-maps \(f_A\) and \(f_V\) of \(A\) and \(V\) respectively, such that the following diagram commutes up to homotopy

\[
\begin{array}{ccc}
V & \xrightarrow{\varphi} & A \\
\downarrow{f_V} & & \downarrow{f_A} \\
V & \xrightarrow{\varphi} & A \\
\end{array}
\]

\[
\begin{array}{ccc}
\downarrow{f} & & \downarrow{f} \\
X & \xrightarrow{i} & X \\
\end{array}
\]

Note that maps \(f_A\) in \(f_V\) are by no means unique. For an \(f \in \text{Aut}_*(C_\varphi)\) a chosen \(f_A\) will not be in general an element of \(\text{Aut}_*(A)\). However, under suitable assumptions that choice can be modified in order to obtain maps \(f'_A\) and \(f'_V\) that fit the above diagram, and such that \(f'_A \in \text{Aut}_*(A)\). This can be achieved by means of an action of \([A, V]\) on \([A, A]\), which we describe in the following paragraph.

Let \(F\) be the homotopy fibre of the projection \(C_\varphi \to C_\varphi/A \simeq \Sigma V\). The homotopy fibre of \(F \hookrightarrow C_\varphi\) is homotopy equivalent to \(\Omega \Sigma V\). By the universal property of Puppe fibration sequences there are maps \(j, k\) such that the diagram

\[
\begin{array}{ccc}
V & \xrightarrow{\varphi} & A \\
\downarrow{j} & & \downarrow{k} \\
\Omega \Sigma V & \xrightarrow{u} & F \\
\end{array}
\]

\[
\begin{array}{ccc}
\downarrow{i} & & \downarrow{i} \\
C_\varphi & \xrightarrow{i} & C_\varphi \\
\end{array}
\]

\[
\begin{array}{ccc}
C_\varphi & \xrightarrow{i} & C_\varphi/A \\
\downarrow{C_\varphi} & & \downarrow{C_\varphi} \\
\Sigma V & \xrightarrow{i} & \Sigma V \\
\end{array}
\]

commutes up to homotopy.

Let \(P_n\) denote the functor that assigns the \(n\)-th Postnikov section \(P_nX\) to a space \(X\).

Lemma 1.1 The maps \(P_nj: P_nV \to P_n\Omega \Sigma V\) and \(P_nk: P_nA \to P_nF\) are homotopy equivalences.

Proof: Consider the following diagram with exact rows

\[
\begin{array}{cccccccc}
\pi_q(C_\varphi) & \to & \pi_q(C_\varphi, A) & \to & \pi_{q-1}(A) & \to & \pi_{q-1}(C_\varphi) & \to & \pi_{q-1}(C_\varphi, A) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\pi_q(C_\varphi) & \to & \pi_q(C_\varphi/A) & \to & \pi_{q-1}(F) & \to & \pi_{q-1}(C_\varphi) & \to & \pi_{q-1}(C_\varphi/A) \\
\end{array}
\]

Since the space \(C_\varphi\) is obtained by attaching \((n+1)\)-cells to \(A\), the homomorphism \(\pi_q(A) \to \pi_q(C_\varphi)\) is an isomorphism for \(q < n\) and an epimorphism for \(q = n\). It follows that \(\pi_q(C_\varphi, A) = 0\) when \(q \leq n\) so, by Blakers-Massey theorem, \(\pi_q(C_\varphi, A) \to \pi_q(C_\varphi/A)\) is an isomorphism for \(q \leq n + 1\). Applying the 5-lemma to the above diagram we get that \(k_2: \pi_q A \to \pi_q F\) is an isomorphism for \(q \leq n\), hence \(P_nk\) is a homotopy equivalence. That \(P_nj\) is a homotopy equivalence is proved similarly (alternatively, one can use the Freudenthal theorem). \(\square\)
As \(\dim(A) \leq n \) for any space \(X \), the function \([A, X] \rightarrow [A, P_n X]\) is a bijection. It follows that \(j \) and \(k \) induce bijections

\[
j^* = j^\circ - : [A, V] \rightarrow [A, \Omega \Sigma V] \quad \text{and} \quad k^* = k^\circ - : [A, A] \rightarrow [A, F].
\]

The lifting of paths induces an action of \(\Omega \Sigma V \) on \(F \) which we denote by \(\mu : \Omega \Sigma V \times F \rightarrow F \). Through the above bijections this yields an action of \([A, V]\) on \([A, A]\): given \(\alpha \in [A, V] \) and \(g \in [A, A] \) define \(\alpha \cdot g \) to be \((k^*)^{-1}\) of the composition

\[
A \overset{(\alpha,g)}{\rightarrow} V \times A \overset{j \times k}{\rightarrow} \Omega \Sigma V \times F \overset{\mu}{\rightarrow} F.
\]

Note that \(i^*(\alpha \cdot g) \simeq i \cdot g : A \rightarrow C_\varphi \) for every \(g : A \rightarrow A \).

Lemma 1.2 The action of \(\alpha \cdot g \) on the homology of \(A \) is given by \((\alpha \cdot g)_* = \varphi_* \alpha_* + g_*\). In other words, \((\alpha \cdot g)_q = g_q\) when \(q \neq n \), and \((\alpha \cdot g)_n = \varphi_n \alpha_n + g_n\).

Proof: It is sufficient to consider the case \(q \leq n \). Recall that \(P_n Y \) can be obtained by attaching to \(Y \) cells of dimension greater than \(n + 1 \), therefore \(H_q(Y) \rightarrow H_q(P_n Y) \) is an isomorphism for \(q \leq n \). In particular, \(H_q(\Omega \Sigma V) = 0 \) for \(q < n \), and by the Eilenberg-Zilber theorem we get that for \(q \leq n \) there is a direct sum representation \(H_q(\Omega \Sigma V \times F) = H_q(\Omega \Sigma V) \oplus H_q(F) \) induced by the inclusions of \(\Omega \Sigma V \) and \(F \) in the product as in the following commutative diagram \((q \leq n)\):

\[
\begin{array}{ccc}
H_q(\Omega \Sigma V) & \overset{u_*}{\longrightarrow} & H_q(F) \\
\downarrow & & \downarrow \\
H_q(\Omega \Sigma V) \oplus H_q(F) & \overset{\mu_*}{\longrightarrow} & H_q(F)
\end{array}
\]

We conclude that in dimensions under consideration the effect of \(\mu_* \) on an element \((x, y) \in H_q(\Omega \Sigma V \times F)\) is given by \(\mu_* (x, y) = u_*(x) + y \). The action of

\[
\alpha \cdot g = (k^*)^{-1}[\mu^* (j \times k)^*(\alpha, g)]
\]

on \(x \in H_q(A) \) is now easily computed:

\[
\mu_*(j \times k)_*(\alpha, g)_*(x) = u_* j_* \alpha_* (x) + k_* g_* (x) = k_\varphi \alpha_* (x) + k_* g_* (x).
\]

As \(k_* \) is an isomorphism when \(q \leq n \), the assertion of the lemma is proved. \(\square \)

In order to prove our main result we need another peace of structure. Let us say that the attaching map \(\varphi : V \rightarrow A \) is canonical if the wedge of spheres \(V \) can be decomposed into two sub-wedges \(V = V_r \vee V_g \) such that \((\varphi|_{V_r})_* : H_n(V_r) \rightarrow H_n(A)\) is injective and that \(\varphi(V_g) \) is contained in the \((n-1)\)-skeleton of \(A \) (and hence \((\varphi|_{V_g})_* = 0\)). When this is the case the exact sequence

\[
0 \longrightarrow H_{n+1}(C_\varphi) \longrightarrow H_n(V) \overset{\varphi_*}{\longrightarrow} H_n(A) \longrightarrow H_n(C_\varphi) \longrightarrow 0,
\]
which determines the homology of C_φ in dimensions n and $n + 1$, can be decomposed into two shorter exact sequences

$$0 \rightarrow H_{n+1}(C_\varphi) \xrightarrow{\sim} H_n(V_g) \rightarrow 0$$

and

$$0 \rightarrow H_n(V_r) \xrightarrow{(\varphi|V_r)_*} H_n(A) \rightarrow H_n(C_\varphi) \rightarrow 0$$

A CW-complex has a canonical decomposition if the attaching maps in all dimensions are canonical. By Theorem 2.3 of [6] any simply-connected countable CW-complex X has the cellular homotopy type of a CW-complex with a canonical decomposition Y, i.e. there are cellular maps $f : X \to Y$ and $g : Y \to X$, such that $f \cdot g$ and $g \cdot f$ are homotopic to 1_Y and 1_X by cellular homotopies.

Lemma 1.3 Assume that the attaching map $\varphi : V \to A$ is canonical. Then for every map $f : X \to X$ satisfying $f_{sn} = 1_{H_n(X)}$ there exists a map $\tilde{f} : A \to A$ such that $i\tilde{f} \simeq fi$, $\tilde{f}_{sn} = 1_{H_n(A)}$ and $\tilde{f}_{sq} = f_{sq}$ for $q < n$.

Proof: As mentioned before, there are maps f_A and f_V with $i \cdot f_A = f \cdot i$ and $\varphi \cdot f_V \simeq f_A \cdot \varphi$. Since φ is canonical, we obtain the following commutative diagram with exact rows (where $\iota : V_r \hookrightarrow V$ and $\pi : V \to V_r$ are the natural inclusion and projection respectively):

$$
\begin{array}{cccc}
0 & \rightarrow & H_n(V_r) & \xrightarrow{\varphi_*} \rightarrow H_n(A) & \xrightarrow{i_s} \rightarrow H_n(C_\varphi) & \rightarrow 0 \\
\downarrow{(i\pi f)_*} & & \downarrow{(f_A)_*} & & \downarrow{f_s} & \\
0 & \rightarrow & H_n(V_r) & \xrightarrow{\varphi_*} \rightarrow H_n(A) & \xrightarrow{i_s} \rightarrow H_n(C_\varphi) & \rightarrow 0
\end{array}
$$

The equality

$$i_s(1 - (f_A)_*) = i_s - i_s(f_A)_* = 0$$

implies that $s := \varphi^{-1}_*(1 - (f_A)_*)$ is a well-defined homomorphism from $H_n(A)$ to $H_n(V_r)$. Using Hopf’s theorem and the fact that $H_n(A)$ is a free group we deduce the existence of a map $\alpha : A \to V$ such that $\alpha_{sn} = s$. Finally, $\tilde{f} := \alpha \cdot f_A$ is a map satisfying the conditions of the lemma. \(\square\)

Using this lemma as inductive step we can prove the following theorem.

Theorem 1.4 Assume that X is countable, simply-connected and finite-dimensional. Then every element of $\text{Aut}_*(X)$ can be represented by a cellular map whose restriction to every skeleton $X^{(q)}$ belongs to $\text{Aut}_*(X^{(q)})$.

Proof: Let $h : X \to Y$ be a cellular homotopy equivalence where Y is an n-dimensional CW-complex with a canonical decomposition, and let \bar{h} be a cellular homotopy inverse of h. For every map $f : X \to X$ representing a class in $\text{Aut}_*(X)$ the composition $g := h \cdot f \cdot \bar{h}$ represents a class in $\text{Aut}_*(Y)$.

We will use induction to prove that there is a cellular map \tilde{g} homotopic to g, such that $g|_{Y^{(q)}} \in \text{Aut}_*(Y^{(q)})$ for every q. Assume inductively that there is a cellular map $g : Y \to Y$, such that $g|_{Y^{(n-q)}} \in \text{Aut}_*(Y^{(n-q)})$ for $q = 0, 1, \ldots, k - 1$. As the inclusion $i_{n-k} : X^{(n-k)} \hookrightarrow X^{(n-k+1)}$ is a
cofibration, the map $\bar{g}_{n-k} \in \text{Aut}_s(Y^{(n-k)})$ satisfying $i_{n-k} \circ \bar{g}_{n-k} \simeq g \circ i_{n-k}$, which exists by the previous lemma, can be extended to a map $\bar{g}_{n-k+1} \in \text{Aut}_s(Y^{(n-k+1)})$ homotopic to $g|_{Y^{(n-k+1)}}$. Iterations of that construction eventually yield a cellular map $\bar{g} \in \text{Aut}_s(Y)$ with the property $g|_{Y^{(n-q)}} \in \text{Aut}_s(Y^{(n-q)})$ for $q = 0, 1, \ldots, k$. Since the assertion for g is obviously true when $k = 0$, the claim is proved.

The map $f := \bar{h} \circ \bar{g} \circ h$ is homotopic to f, and due to the cellularity of h and \bar{h}, $f|_{X^{(q)}} \in \text{Aut}_s(X^{(q)})$. □

The proof of our main result is now at hand. Let us denote by $G_q = G_q(X)$ the subgroup of $\text{Aut}_s(X)$ whose elements are represented by maps f with the property $f|_{X^{(q)}} = 1_{X^{(q)}}$.

Theorem 1.5 Let X be a countable, simply-connected n-dimensional CW-complex. Then G_q is a normal subgroup of $\text{Aut}_s(X)$ for every q. Moreover,

$$1 \trianglelefteq G_{n-1} \trianglelefteq \ldots \trianglelefteq G_2 \trianglelefteq \text{Aut}_s(X).$$

is a finite normal series for $\text{Aut}_s(X)$.

Proof: Let $[g] \in \text{Aut}_s X$, \bar{g} a homotopy inverse of g, and $[f] \in G_q$. We must prove that $g \circ f \circ \bar{g}$ is homotopic to a map whose restriction to $X^{(q)}$ equals $1_{X^{(q)}}$. Because of the previous theorem, we can assume that g is cellular and that $g|_{X^{(q)}} \in \text{Aut}_s(X^{(q)})$. We can also assume without loss of generality that $\bar{g}|_{X^{(q)}}$ is a homotopy inverse of $g|_{X^{(q)}}$. The commutativity of the diagram

$$\begin{array}{ccc}
X & \xrightarrow{\bar{g}} & X \\
\| & f & \downarrow g \\
X^{(q)} & \xrightarrow{g|_{X^{(q)}}} & X^{(q)}
\end{array}$$

implies that $(g \circ f \circ \bar{g})|_{X^{(q)}}$ is homotopic to $1_{X^{(q)}}$. As the inclusion of $X^{(q)}$ in X is a cofibration, $g \circ f \circ \bar{g}$ is homotopic to a map that restricts to $1_{X^{(q)}}$, hence it belongs to a class in G_q, which proves the normality. □

2 Applications

As already mentioned, the existence of a normal series is a necessary condition if one wants to construct a spectral sequence for a noncommutative group. In the Shih’s spectral sequence (see [7]) such a normal series for $\text{Aut}(X)$ is obtained for free, due to the naturality of the Postnikov’s decomposition. The apparent impossibility to construct a normal series for $\text{Aut}(X)$ corresponding to a cellular decomposition is a real obstacle for the study of this group by means of spectral sequences.

However, spectral sequences for $\text{Aut}_s(X)$ will be treated elsewhere, but there are also some immediate implications, which we consider in this section. In the presence of a normal series it is natural to ask what are its subquotients. Unfortunately, the description of those turns out to be quite complicated but nonetheless, some estimates are possible.
When X is a subspace of Y let us denote by $\text{aut}_sX(Y)$ the space consisting of self-maps of Y which induce identity automorphisms of homology groups and which restrict to the identity on X, and let $\text{Aut}_sX(Y) := \pi_0(\text{aut}_sX(Y))$.

Lemma 2.1 Let X be as in theorem 1.5. For a fixed q, if the group $\text{Aut}_{sX(q)}(X^{(q+1)})$ is trivial, then so is the quotient G_q/G_{q+1} (i.e. $G_{q+1} = G_q$).

Proof: Every element of G_q can be represented by a cellular map f such that $f|_{X^{(p)}} \in \text{Aut}_s(X^{(p)})$ for every p and $f|_{X^{(q)}} = 1_{X^{(q)}}$. The restriction $f|_{X^{(q+1)}}$ represents an element of $\text{Aut}_{sX(q)}(X^{(q+1)})$, which is by the assumptions trivial, so there is a homotopy, which is fixed on $X^{(q)}$, between $f|_{X^{(q+1)}}$ and the identity. As $X^{(q+1)} \to X$ is a cofibration, this homotopy can be extended over all of X, therefore f represents an element in G_{q+1}. □

The space $X^{(q+1)}$ is the mapping cone of the attaching map $\varphi_q : V_q \to X^{(q)}$, where V_q is a wedge of q-dimensional spheres. The application of the functor $[-, X^{(q+1)}]$ to the Puppe cofibration sequence

$$V_q \xrightarrow{\varphi_q} X^{(q)} \xrightarrow{p} X^{(q+1)} \xrightarrow{\Sigma V_q}$$

yields an exact sequence of pointed sets

$$[\Sigma V_q, X^{(q+1)}] \xrightarrow{p^*} [X^{(q+1)}, X^{(q+1)}] \xrightarrow{[\,, X^{(q)}]} [X^{(q)}, X^{(q+1)}],$$

hence a self-map of $X^{(q+1)}$ restricting to the identity on $X^{(q)}$ corresponds to an element coming from $[\Sigma V_q, X^{(q+1)}]$. It is well-known (cf. §1 of [5]) that $p^*(f)$ of an $f : \Sigma V_q \to X^{(q+1)}$ is homotopic to the composition

$$X^{(q+1)} \xrightarrow{\nu} X^{(q+1)} \vee \Sigma V_q \xrightarrow{1 \vee f} X^{(q+1)} \vee X^{(q+1)} \xrightarrow{F} X^{(q+1)},$$

where ν is the standard coaction and F is the folding map. An elementary computation shows that on homology $(p^*(f))_* = 1 + f_*$. We conclude that the elements of $\text{Aut}_{sX(q)}(X^{(q+1)})$ are in bijection with classes in $[\Sigma V_q, X^{(q+1)}]$ which induce trivial homomorphisms in homology. Since $[\Sigma V_q, X^{(q+1)}] \cong \text{Hom}(\pi_{q+1}(\Sigma V_q), \pi_{q+1}(X^{(q+1)}))$, the effect of an $f : \Sigma V_q \to X^{(q+1)}$ in homology can be determined from the following commutative diagram (both h are Hurewicz maps):

$$\pi_{q+1}(\Sigma V_q) \xrightarrow{f} \pi_{q+1}(X^{(q+1)})$$

$$\xrightarrow{h} \xrightarrow{h} H_{q+1}(\Sigma V_q) \xrightarrow{f} H_{q+1}(X^{(q+1)})$$

The following theorem, which is dual to the main result of [8], now readily follows:

Theorem 2.2 Let X be a simply-connected, countable, finite-dimensional CW-complex. If the Hurewicz homomorphism $h : \pi_q(X^{(q)}) \to H_q(X^{(q)})$ is injective for all q such that X has q-dimensional cells, then $\text{Aut}_s(X) = \{1\}$.

Let us conclude with some applications of the last theorem:

1. The homotopy groups of the complex projective spaces are given by \(\pi_2(\mathbb{C}P^n) \cong \mathbb{Z} \) and \(\pi_i(\mathbb{C}P^n) \cong \pi_i(S^{2n+1}) \) when \(i > 2 \). The dimension of \(\mathbb{C}P^n \) is \(2n \) and the first non-trivial Hurewicz homomorphism is bijective so by the previous theorem \(\text{Aut}_*(\mathbb{C}P^n) = \{1\} \).

2. A Moore space \(M(G, n) \) has a cellular decomposition with cells only in dimension \(n \) if \(G \) is a free group, and in dimensions \(n \) and \(n + 1 \) otherwise. In those dimensions the homotopy groups are \(\pi_n(M(G, n)) \cong G \) and \(\pi_{n+1}(M(G, n)) \cong G \otimes \mathbb{Z}_2 \) (we are assuming \(n > 2 \)). Consequently, when \(G \) is a free group or when \(G \otimes \mathbb{Z}_2 = 0 \) the group \(\text{Aut}_*(M(G, n)) \) is trivial.

3. Let us consider spaces \(S^n \vee S^{n+4} \) when \(n \geq 6 \). The usual cellular decomposition has cells in dimensions \(n \) and \(n + 4 \), and by the Hilton-Milnor theorem

\[
\pi_n(S^n \vee S^{n+4}) \cong \pi_{n+4}(S^n \vee S^{n+4}) \cong \mathbb{Z},
\]

induced by the inclusions of \(\pi_n(S^n) \) and \(\pi_{n+4}(S^{n+4}) \) respectively. For that reason the Hurewicz homomorphisms in dimensions \(n \) and \(n + 4 \) are bijective, hence \(\text{Aut}_*(S^n \vee S^{n+4}) \) is trivial when \(n \geq 6 \). By the same argument \(\text{Aut}_*(S^n \vee S^{n+5}) \) is trivial when \(n \geq 7 \). Note that these cases are exceptional as it can be easily seen that \(\text{Aut}_* \) of a wedge of spheres is generally non-trivial.

4. By the results of [2] the group \(\text{Aut}_*(X) \) is nilpotent, so it can be localized with respect to a set of primes. Maruyama showed in [4] that \(\text{Aut}_* \) commutes with the localization when \(X \) is a simply-connected finite CW-complex, i.e. the obvious map

\[
\text{Aut}_*(X) \to \text{Aut}_*(X_P)
\]

is a \(P \)-localization for any set of primes \(P \). As the localization of a finite simply-connected complex is countable and finite-dimensional, the previous theorem can be applied on primary components.

References

