Brooks Theorem for Generalized Dart Graphs

Martin Kochol†
MÚ SAV, Štefánikova 49, 814 73 Bratislava 1, Slovakia
martin.kochol@mat.savba.sk

Riste Škrekovski ‡
Department of Mathematics, University of Ljubljana,
Jadranska 19, 1111 Ljubljana, Slovenia
skrekovski@gmail.com

Abstract

The well-known Brooks’ Theorem says that each graph G of maximum degree $k \geq 3$ is k-colorable unless $G = K_{k+1}$. We generalize this theorem by allowing higher degree vertices with prescribed types of neighborhood.

1 Introduction

A k-coloring of a graph is a mapping from the set of vertices to $\{1, \ldots, k\}$ such that any two adjacent vertices have different colors. The decision problem whether a given graph G has a k-coloring is a classical NP-complete problem for every fixed $k \geq 3$ (see [3, 4]).

By Brooks’ Theorem [1], every graph with maximum vertex degree at most $k \geq 3$ and without a component isomorphic to K_{k+1} (a complete graph on $k + 1$ vertices) has a k-coloring. Furthermore, as follows from [2, 6, 7, 8, 9], there exists a linear-time algorithm that finds a k-coloring for such a graph.

Kochol, Lozin, and Randerath [6, Theorem 4.3] proved that if \mathcal{D} is a class of graphs in which the neighborhood of each 4-degree vertex induces a graph isomorphic to a disjoint union of an isolated vertex and a path of length 2, then every graph from \mathcal{D} is either 3-colorable or has a component isomorphic to K_4. Furthermore, there exists

∗These results were presented in IWOCA 2010.
†Supported in part by grant VEGA 2/0118/10.
‡Supported in part by ARRS Research Program P1-0297.

keywords: (k, s)-dart graph, graph algorithms, NP-complete problem, (k, s)-diamond, Brooks’ Theorem.
a linear-time algorithm that finds either a 3-coloring or a component isomorphic to \(K_4 \) for each graph from \(D \). This generalizes the Brooks’ Theorem for the case \(k = 3 \).

The aim of this paper is to generalize the Brooks’ Theorem and the result from [6, Theorem 4.3]. We consider classes of graphs where each vertex of degree at least \(k + 2 \) has a strictly prescribed neighborhood, so called “\((k, s)\)-dart graphs”, defined in the following section. Our main result, Theorem 1, is that if \(G \) is a \((k, s)\)-dart graph, \(k \geq \max\{3, s\} \), and \(s \geq 2 \), then \(G \) is \((k+1)\)-colorable if and only if it has no component isomorphic to \(K_{k+2} \). Furthermore, if \(G \) is \((k+1)\)-colorable, then a \((k+1)\)-coloring of \(G \) can be constructed in a linear time. We also show that if \(s > k \geq 3 \), then it is an NP-complete problem to decide whether a \((k, s)\)-dart graph is \((k+1)\)-colorable (see Theorem 2).

2 Definitions

In this paper we consider simple graphs, i.e., without multiple edges and loops. If \(G \) is a graph, then \(V(G) \) and \(E(G) \) denote the vertex and the edge sets of \(G \), respectively.

Let \(G \) be a graph and \(x, y \) two vertices of \(G \). Then \(G + xy \) denotes the graph constructed from \(G \) by adding an edge \(xy \). Since we consider simple graphs, \(G + xy = G \) if \(x, y \) are adjacent in \(G \). For a vertex \(v \) of \(G \), let \(d_G(v) \) denote the degree of \(v \) in \(G \). Let \(H, G \) be two graphs such that no subgraph of \(G \) is isomorphic with \(H \). Then we say that \(G \) is a \(H \)-free graph.

A \((k, s)\)-diamond is a join of a clique of size \(k \geq 1 \) and an independent set of size \(s \geq 1 \). Notice that these graphs are edge-maximal split graphs. In a \((k, s)\)-diamond \(D \), vertices that belong to the independent set are called pick vertices, and the remaining (i.e. those in the \(k \)-clique) are called central vertices. Denote by \(C(D) \) and \(P(D) \) the sets of central vertices and pick vertices of \(D \), respectively. An example of a \((4, 3)\)-diamond \(D \) with \(C(D) = \{c_1, \ldots, c_4\} \) and \(P(D) = \{p_1, p_2, p_3\} \) is in Figure 1.

![Figure 1: A (4,3)-diamond.](image)

Note that a \((k, 1)\)-diamond is isomorphic to \(K_{k+1} \); in this case the unique pick vertex does not distinguish from the central vertices. This is irrelevant for us, because in this paper we deal only with \((k, i)\)-diamonds where \(i \geq 2 \).

Definition 1 A graph \(G \) is a \((k, s)\)-dart if each vertex of \(G \) of degree \(\geq k+2 \) is a central vertex of some \((k, i)\)-diamond \(D \) as an induced subgraph of \(G \) with \(2 \leq i \leq s \), for which
(a) \(d_D(x) \geq d_G(x) - 1 \) for each \(x \in V(D) \);

(b) no two vertices of \(C(D) \) have a common neighbor in \(G - D \).

The following remarks related to Definition 1 are straightforward:

(1) Inequality \(i \geq 2 \) can be removed in Definition 1, because it follows from the fact that \(D \) contains a vertex of degree \(\geq k + 2 \).

(2) Every graph of maximum degree \(\leq k + 1 \) is a \((k, 1)\)-dart graph since in Definition 1, we only prescribe the structure on the neighborhood of vertices of higher degree.

(3) Every \((k, s_1)\)-dart graph is a \((k, s_2)\)-dart if \(s_1 \leq s_2 \).

Notice that \((2, 2)\)-diamonds and \((2, 2)\)-dart graphs are called diamonds and dart graphs, respectively, in [6]. By a generalized dart graph and generalized diamond we mean any \((k, s)\)-dart graphs and any \((k, s)\)-diamond, \(k, s \geq 2 \), respectively. In this paper we usually omit the word generalized, if it is clear from the context which term we have in mind.

In a \((k, s)\)-dart graph \(G \), every vertex of degree at least \(k + 2 \) belongs to an induced \((k, i)\)-diamond with \(2 \leq i \leq s \). Denote by \(D(G) \) the set of all induced maximal \((k, i)\)-diamonds of \(G \) with \(i \geq 2 \).

We say that a vertex of a \((k, s)\)-dart graph \(G \) is central, if it is a central vertex of a \((k, i)\)-diamond of \(D(G) \), \(i \leq s \). Similarly define a pick vertex of \(G \). Denote the sets of central vertices and pick vertices by \(C(G) \) and \(P(G) \), respectively.

Let \(G \) be a \((k, s)\)-dart graph and \(D \in D(G) \). Then, each central vertex \(x \in C(D) \) is adjacent to at most one vertex \(v' \) from \(G - D \). In this case, \(v' \) is called an isolated neighbor of \(v \). The set of all isolated neighbors of the central vertices of \(D \) is denoted by \(I(D) \). Notice that the possibility that \(I(D) = \emptyset \) is not excluded.

We remark that the following observations for a \((k, s)\)-dart graph \(G \) hold:

(4) A central vertex \(v \) of a \((k, s)\)-dart graph \(G \) is not necessarily of degree at least \(k + 2 \). This happens only if \(v \) is a central vertex of a \((k, 2)\)-diamond \(D \in D(G) \) and it has no neighbor in \(G - D \). Then, \(v \) is of degree \(k + 1 \). The possibility that all central vertices of \(D \) are of degree \(k + 1 \) is not excluded.

(5) If \(K_{k+2} \) is a subgraph of a \((k, s)\)-dart graph \(G \), then it must be a component of \(G \). Thus a copy of \(K_{k+2} \) in \(G \) is disjoint from diamonds of \(D(G) \).

(6) No two pick vertices of the same diamond from \(D(G) \) are adjacent.

3 Properties of dart graphs

The next lemma assures that diamonds in a dart graph are vertex disjoint.

Lemma 1 Let \(G \) be a \((k, s)\)-dart graph with \(k \geq 3 \). Then
(a) \(V(D_1) \cap V(D_2) = \emptyset \), for every two distinct diamonds \(D_1, D_2 \in D(G) \).

(b) \(C(G) \cap P(G) = \emptyset \); in particular each pick vertex is of degree \(k \) or \(k+1 \).

Proof. We prove (a). Suppose that \(v \) is a vertex of two distinct diamonds \(D_1, D_2 \in D(G) \).

Assume that \(v \in C(D_1) \cap C(D_2) \). If \(C(D_1) = C(D_2) \), then by Definition 1(b) we obtain that \(P(D_1) = P(D_2) \), whence \(D_1 = D_2 \). Thus \(C(D_1) \neq C(D_2) \).

Suppose first \(|C(D_1) \cap C(D_2)| = 1 \), i.e., \(C(D_1) \cap C(D_2) = \{v\} \). Then by Definition 1, either \(k-2 \) or \(k-1 \) vertices of \(C(D_2) \) (resp. \(C(D_1) \)) are pick vertices of \(D_1 \) (resp. \(D_2 \)). But then for \(k \geq 4 \), we obtain also two adjacent pick vertices of \(D_1 \) (resp. \(D_2 \)), a contradiction to (6). So we may assume that \(k = 3 \), \(C(D_1) = \{u_1, w_1, v\} \), \(C(D_2) = \{u_2, w_2, v\} \), and \(u_1 \) (resp. \(u_2 \)) are pick vertices of \(D_1 \) (resp. \(D_1 \)). By (6), \(w_1 \) (resp. \(w_2 \)) is not a pick vertex of \(D_2 \) (resp. \(D_1 \)). Then \(w_1 \in I(D_2) \) (resp. \(w_2 \in I(D_1) \)) is a common neighbor of \(v, u_2 \in C(D_2) \) (resp. \(v, u_1 \in C(D_1) \)), a contradiction with Definition 1(b).

Suppose now \(|C(D_1) \cap C(D_2)| \geq 2 \). Then each vertex \(u \in C(D_1) \setminus C(D_2) \) is a neighbor of at least two vertices from \(C(D_2) \), whence by Definition 1(b), \(u \in P(D_2) \) and thus \(C(D_1) \setminus C(D_2) \subseteq P(D_2) \). Similarly \(C(D_2) \setminus C(D_1) \subseteq P(D_1) \). Thus the subgraph of \(G \) induced by \(C(D_1) \cup C(D_2) \) is a clique, whence \(|C(D_1) \cup C(D_2)| = k+1 \), and so \(|C(D_1) \cap C(D_2)| = k-1 \). By assumption, \(D_1 \) is a \((k, s_1)\)-diamond, \(s \geq s_1 \geq 2 \). Thus there exists \(x_1 \in P(D_1) \setminus C(D_2) \). By (6), we infer that \(x_1 \in I(D_2) \), but then it is a common neighbor of at least two vertices from \(C(D_2) \), a contradiction with Definition 1(b).

By the above two paragraphs, we can assume that \(C(D_1) \cap C(D_2) = \emptyset \). If \(v \in V(D_1) \cap P(D_2) \), then \(d_{D_2}(v) + 1 < d_G(v) \), a contradiction with Definition 1(a). Similarly if \(v \in V(D_2) \cap P(D_1) \). This proves (a). Claim (b) is an easy consequence of (a). □

In the next few lemmas, we study properties of a graph \(G' \) obtained from \(G \) by applying some local modifications.

Lemma 2 Let \(G \) be a \(K_{k+2} \)-free \((k, s)\)-dart graph with \(k \geq 3 \) and let \(D \in D(G) \). Suppose that \(a_1, a_2 \) are two central vertices of \(D \) and let \(x_1, x_2 \) be their isolated neighbors, respectively. Then the graph \(G' = G - x_1a_1 - x_2a_2 + x_1x_2 \) is a \(K_{k+2} \)-free graph unless there exists \(D' \in D(G) \) such that \(x_1, x_2 \) are pick vertices of \(D' \).

Proof. Suppose that \(G' \) contains a copy \(H \) of \(K_{k+2} \). Then, \(x_1, x_2 \) are vertices of \(H \), thus cannot be adjacent in \(G \) and there is a set \(S \) of \(k \) common neighbors of \(x_1 \) and \(x_2 \) in \(G \), which induce a clique. Notice that \(|S| = k \) and \(d_G(x_1), d_G(x_2) \geq k+1 \).

Suppose that \(d_G(x_1) \geq k+2 \). Then, \(x_1 \) is a central vertex of some diamond \(D' \in D(G) \), whence by Definition 1(b), \(S \subseteq V(D') \) and clearly, \(|S \cap C(D')| \geq k-1 \geq 2 \). Then \(x_2 \) has at least 2 neighbors in \(C(D') \), whence \(x_2 \) belongs to \(D' \), and so it is adjacent to \(x_1 \) in \(G \), a contradiction.

Thus, by previous paragraph, we may assume that \(d(x_1) = k + 1 \), and analogously \(d(x_2) = k + 1 \). Then \(x_1, x_2 \) and \(S \) belong to a diamond \(D' \in D(G) \) in which \(x_1, x_2 \in P(D') \) and \(S = C(D') \). □
Lemma 3 Let G be a (k, s)-dart graph and let $D \in \mathcal{D}(G)$. Suppose that a_1, a_2 are two central vertices of D and let x_1, x_2 be their isolated neighbors, respectively. Then the graph $G' = G - x_1(a_1 - a_2x_2 + x_1x_2)$ is a (k, s)-dart graph unless one of the following conditions occurs:

(7) there exists $D' \in \mathcal{D}(G)$ such that x_1, x_2 are pick vertices of D';

(8) there exists $D' \in \mathcal{D}(G)$ and $i \in \{1, 2\}$ such that $x_i \in C(D')$ and x_{3-i} is an isolated neighbor of a central vertex from D', which is distinct from x_i.

Proof. Suppose that G' is not a (k, s)-dart graph. Each vertex preserve its degree from G except a_1, a_2, which belong to D. Notice that D is a diamond in G' as well. If there is some $D' \in \mathcal{D}(G)$ that is not induced diamond of G', then x_1 and x_2 must be pick vertices of D', which gives case (7).

Thus each diamond $D' \in \mathcal{D}(G)$ is an induced diamond of G'. Clearly D' satisfies Definition 1(a) in G'. If D' does not satisfy Definition 1(b) in G', then there are two central vertices u and v of D' with a common neighbor w outside D'. Notice that x_1x_2 is one of the edges uw or vw. Then without loss of generality, we may assume that x_1 is a central vertex in D' and x_2 is an isolated neighbor of a central vertex of D' distinct from x_1, which gives case (8). \square

Notice that in the exceptional case (7) of the above lemma, G' may still be a dart graph, when x_1, x_2 are pick vertices of a $(k, 2)$-diamond D' with no isolated vertices. Then, D' becomes a copy of K_{k+2} in G'.

4 An extension of Brooks theorem

For a diamond $D \in \mathcal{D}(G)$, a vertex of $I(D)$ could be a central or pick vertex of another diamond of $\mathcal{D}(G)$. Denote by $I_c(D)$ and $I_p(D)$ the subset of all such vertices of $I(D)$, respectively. By Lemma 1(b), sets $I_c(D)$ and $I_p(D)$ are disjoint. Finally, let $I_u(D)$ be the vertices of $I(D)$ that are neither in $I_c(D)$, nor in $I_p(D)$.

Lemma 4 Suppose that we have a K_{k+2}-free (k, s)-dart graph G, $k \geq \max\{3, s\}$, $s \geq 2$, together with the set $\mathcal{D}(G) \neq \emptyset$. Then we can find $D \in \mathcal{D}(G)$ and construct a K_{k+2}-free (k, s)-dart graph G^* together with $\mathcal{D}(G^*)$ in $O(|E(D)|)$ time such that

(a) $|\mathcal{D}(G^*)| < |\mathcal{D}(G)|$;

(b) $|E(G^*)| \leq |E(G)| - |E(D)|$;

(c) From any $(k + 1)$-coloring λ of G^* one can construct a $(k + 1)$-coloring of G in $O(|E(D)|)$ time.

Proof. Consider a (k, i)-diamond $D' \in \mathcal{D}(G)$, $2 \leq i \leq s$, and check three cases:

Case 1. $|I(D')| < k$. Thus there exists $v \in C(D')$ having no isolated neighbor. In this case we take $D := D'$ and $G^* := G - D'$. Suppose that u' is an arbitrary vertex
of degree $\geq k + 2$ in G^\ast. Then, it is also of degree $\geq k + 2$ in G, and hence it belongs to a (k, i)-diamond $D'' \in \mathcal{D}(G)$ with $2 \leq i \leq s$. Diamonds D and D'' are disjoint, by Lemma 1, and hence D'' is an induced (k, s)-diamond in G^\ast. Furthermore, Lemma 1 assures that $\mathcal{D}(G)$ consists of D and $\mathcal{D}(G^\ast)$. Thus G^\ast is a (k, s)-dart graph. Obviously, G^\ast is a K_{k+2}-free graph and $|E(G^\ast)| \leq |E(G)| - |E(D)|$.

Let λ^\ast be a $(k + 1)$-coloring of G^\ast. Since every pick vertex of D has at most one neighbor outside D, and since $|P(D)| \leq k$, it follows that there exists a color c that we can assign to all pick vertices of D. Denote by u_1, \ldots, u_{k-1} the vertices from $C(D) \setminus \{v\}$ and take $u_k := v$. For $i = 1, \ldots, k$, take $L(u) = \{1, \ldots, k + 1\} \setminus \{c, \lambda^\ast(x_i)\}$ if u_i has an isolated neighbor x_i, otherwise take $L(u) = \{1, \ldots, k + 1\} \setminus \{c\}$. Thus $k \geq |L(u_i)| \geq k - 1$ for $i < k$ and $|L(u_k)| = k$ (because $u_k = v$ has no isolated neighbor). For $i = 1, \ldots, k$ we assign u_i a color from $L(u_i)$ and remove this color from all $L(u_j)$ where $j > i$. Clearly, each $L(u_i)$ is nonempty after $i - 1$ steps, thus this process gives a coloring λ of G, and can be done in $O(|E(D)|)$ time.

Case 2. $|I(D')| = k$ and $I(D')$ does not consist of pick vertices of one diamond of $\mathcal{D}(G)$. Suppose that each pair $x_1, x_2 \in I(D')$ satisfies either (7), or (8). This implies immediately that $|I_s(D')| \leq 1$ and $|I_c(D')| \leq 1$. Thus $|I_p(D')| \geq 1$ (because $k \geq 3$).

Each $x_1 \in I_s(D') \cup I_c(D')$ and $x_2 \in I_p(D')$ satisfy neither (7), nor (8), whence $I_s(D') \cup I_c(D') = \emptyset$. Thus all vertices of $I(D')$ must be pick vertices of one diamond of $\mathcal{D}(G)$. This contradicts the assumption of Case 2.

Thus there exist two distinct vertices $x_1, x_2 \in I(D')$ satisfying neither (7), nor (8). To find them is an easy process. Take $x_1 \in I_s(D') \cup I_c(D')$ and $x_2 \in I_p(D')$ if possible. If $I_p(D') = \emptyset$, then either $|I_s(D')| \geq 2$, or $|I_c(D')| \geq 2$, and we can choose x_1, x_2 from one of them. If $I_s(D') \cup I_c(D') = \emptyset$, $I_p(D')$ has at least two vertices from different diamonds of $\mathcal{D}(G)$, and choose them.

After choosing x_1, x_2, take the graph $G' = G - x_1a_1 - x_2a_2 + x_1x_2$. By Lemmas 2 and 3, G' is a K_{k+2}-free (k, s)-dart graph. Moreover, $|E(G')| < |E(G)|$ and $\mathcal{D}(G') = \mathcal{D}(G')$. $D' \in \mathcal{D}(G')$ but the number of isolated vertices of D' in G' is smaller then k. Thus we can apply the construction from Case 1 for G' and D'; i.e., we take $D := D'$ and $G^\ast := G' - D'$. Analogously as in Case 1, G^\ast is a K_{k+2}-free (k, s)-dart graph, $|E(G^\ast)| \leq |E(G)| - |E(D)|$ and $\mathcal{D}(G^\ast) = \mathcal{D}(G) \setminus \{D\}$.

Let λ^\ast be a $(k + 1)$-coloring of G^\ast. Applying the process described in Case 1, we get a $(k + 1)$-coloring λ of G. Clearly $\lambda(a_1) \neq \lambda(a_2)$ and $\lambda(x_1) \neq \lambda(x_2)$. By Definition 1, a_1 and x_2 are non-adjacent, and similarly a_2 and x_1 are non-adjacent. Notice that λ is not a coloring of G if and only if $\lambda(a_1) = \lambda(x_1)$ or $\lambda(a_2) = \lambda(x_2)$. But in that case, we can simply interchange the colors of a_1 and a_2, and obtain a proper $(k + 1)$-coloring λ of G. Furthermore, λ can be transformed to λ in $O(|E(D)|)$ time.

Case 3. $|I(D')| = k$ and $I(D')$ consists of pick vertices of some $D'' \in \mathcal{D}(G)$. Now D'' is a (k, k)-diamond, because there exists a perfect matching between $C(D')$ and $P(D'')$. Thus $s = k$ and $|E(D')| \leq |E(D'')|$ (because D' is a (k, i)-diamond where $i \leq k = s$). If Cases 1 or 2 are satisfied for D'', we set $D = D''$ and apply the constructions described in these cases for D and obtain G^\ast with required properties. Otherwise $|I(D'')| = k$ and $I(D'')$ consists of pick vertices of some $D''' \in \mathcal{D}(G)$. We consider two subcases:
Case 3.1. $D'' = D'$. Then vertices of D' and D'' induce a component G' of G. In this case we take $D := D'$ and $G^* := G - G'$. Notice that G^* is a (k, s)-dart graph, $|E(G^*)| + 2|E(D')| = |E(G)|$ and $\mathcal{D}(G^*) = \mathcal{D}(G) \setminus \{D', D''\}$. Moreover, we can construct a $(k + 1)$-coloring of G' in $O(k)$ time: just color all vertices of $P(D')$ and $P(D'')$ by the color $k + 1$, and assign colors $1, \ldots, k$ to the vertices of $C(D')$ and $C(D'')$.

Case 3.2. $D'' \neq D'$. In this case we take $D := D''$ and set G^* to be the graph we obtain by removing the vertices of D'' and inserting a perfect matching between $C(D')$ and $P(D'')$. Then G^* is a (k, s)-dart graph, $|E(G^*)| + |E(D)| = |E(G)|$ and $\mathcal{D}(G^*) = \mathcal{D}(G) \setminus \{D\}$. Let λ^* be a $(k + 1)$-coloring of G^*. Then λ^* assigns the same color c to all vertices of $P(D'')$. Assign c also to all vertices of $P(D'')$ and to each of the vertices of $C(D'')$ an unique color from $\{1, \ldots, k + 1\} \setminus \{c\}$. This gives a required coloring of G.

Clearly, we can check in $O(k)$ time whether $I(D')$ has cardinality k or satisfies the conditions required in Cases 1, 2, 3.1, and 3.2. Thus all reductions from G to G^* and transformations of $k + 1$-colorings of G^* to $k + 1$-colorings of G can be done in $O(|E(D)|)$ time. This implies the statement. \hfill \square

Notice that G^* from Lemma 4 also satisfy $|V(G^*)| \leq |V(G)| - |V(D)|$.

Now we are ready to prove the main result.

Theorem 1 Let G be a (k, s)-dart graph where $s \geq 2$ and $k \geq \max\{3, s\}$ are arbitrary but fixed integers. Then G is $(k + 1)$-colorable if and only if it has no component isomorphic to K_{k+2}. Furthermore, if G is $(k + 1)$-colorable, then a $(k + 1)$-coloring of G can be constructed in $O(|E(G)|)$ time.

Proof. The necessity of the first part of the theorem is trivial. We prove sufficiency and the second part of the theorem. Let G be a (k, s)-dart graph. We can check in $O(|E(G)|)$ (linear) time whether G is K_{k+2}-free. Analogously, we can find the set $\mathcal{D}(G)$ in linear time. Consequently, by means of Lemma 4 we can create in linear time a K_{k+2}-free graph G' without vertices of degree more than $k + 1$ such that any $(k + 1)$-coloring of G' can be transformed into a $(k + 1)$-coloring of G in linear time. By [7] (see also [9, 6]), a $(k + 1)$-coloring of G' can be found in linear time. \hfill \square

Notice that if v is a vertex of a (k, s)-dart graph G of degree at least $k + 2$ and $N(v)$ is the set of its incident vertices, then the graph induced by $N(v) \cup \{v\}$ is a (k, i)-diamond $(2 \leq i \leq s)$ with a possible pending edge. A similar property have central vertices of G of degree $k + 1$. Thus the problem to find $\mathcal{D}(G)$ in G is much easier then to find a maximal clique in a graph (a known NP-hard problem, see [3]). Also it is a trivial problem to determine in time $O(|E(G)|)$ whether a graph G is a (k, s)-dart graph (where k is arbitrary but fixed integer $\leq |V(G)|$).

5 NP-Completeness

In this section we show that Theorem 1 cannot be extended for (k, s)-dart graphs where $s > k \geq 2$ unless $P = NP$.

7
We need some more notation. Take \(n \) vertex disjoint copies of \((k, k+1)\)-diamonds \(D_1, \ldots, D_n \), \(k, n \geq 2 \). For \(i = 1, \ldots, n \), denote by \(v_{i,1}, \ldots, v_{i,k} \) and \(u_{i,1}, \ldots, u_{i,k+1} \) the central and pick vertices of \(D_i \), respectively. Add \(nk \) new edges \(v_{i,j}u_{i+1,j}, i = 1, \ldots, n, j = 1, \ldots, k \) (considering the sum \(i + 1 \mod n \)). Then the resulting graph is called a \((n, k+1)\)-bracelet and vertices \(u_{i,k+1}, \ldots, u_{n,k+1} \) are called its connectors. An example of a \((4, 3)\)-bracelet with connectors \(u_{1,3}, \ldots, u_{4,3} \) is in Figure 2.

![Figure 2: A (4, 3)-bracelet.](image)

Lemma 5 Let \(G \) be a \((n, k+1)\)-bracelet, \(n, k \geq 2 \). Then in any \((k+1)\)-coloring of \(G \), all connectors of \(G \) have the same color.

Proof. By the above construction, \(G \) is composed from \(n \) vertex disjoint copies of \((k, k+1)\)-diamonds \(D_1, \ldots, D_n \). Consider a \((k+1)\)-coloring of \(G \). For every \(i \in \{1, \ldots, n\} \), the central vertices of \(D_i \) form a clique of order \(k \), whence must be colored by \(k \) different colors, and thus all pick vertices of \(D_i \) have the same color. Furthermore, each central vertex of \(D_i \) is adjacent with a pick vertex of \(D_{i+1} \). Therefore all vertices from \(P(D_1) \cup \ldots \cup P(D_n) \) have the same color, thus also the connectors of \(G \). \(\square \)

We study complexity of the following problem.

\((k, s)\)-DART-\((k+1)\)-COL

Instance: A \((k, s)\)-dart graph \(G \).

Question: Is \(G \) \((k+1)\)-colorable?

Theorem 2 The problem \((k, s)\)-DART-\((k+1)\)-COL, \(k \geq 2 \), is

(a) NP-complete for \(s > k \),

(b) solvable in linear time for \(2 \leq s \leq k \).

Claim (b) holds true by Theorem 1 for \(k \geq 3 \) and by [6, Theorem 4.3] for \(k = 2 \).

We prove (a). Let \(G \) be a graph. Replace each vertex \(v \) of \(G \) of degree \(\geq 2 \) by a \((d_G(v), k+1)\)-bracelet \(H_v \). Let \(H_v \) be an isolated vertex if \(d_G(v) = 1 \). Each edge \(uv \) of \(G \) replace by an edge joining a connector of \(H_v \) with a connector of \(H_u \) so that each connector is attached to at most one new edge. Denote the resulting graph by \(G' \). Clearly, \(G' \) is a \((k, k+1)\)-dart graph. From Lemma 5 it follows that by any \((k+1)\)-coloring \(G' \), all connectors of \(H_v, v \in V(G) \), must be colored by the same color. Hence
G' is $(k+1)$-colorable if and only if G is so. Thus the problem whether a $(k, k+1)$-dart graph is $k+1$-colorable can be polynomially reduced to the problem of $(k+1)$-coloring. This problem is NP-complete for every fixed $k \geq 2$ by Garey and Johnson [3, GT4]. This proves claim (a). □

Acknowledgement. Authors thank unknown referees for helpful comments.

References

