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Abstract. Let Y be a simply connected finite complex and let p be a prime. Let Sm[p−1] denote the
complex obtained from the m-sphere by inverting p . It is shown in this paper that Y has an eventual
H-space exponent at p if and only if the space map∗(Sm [p−1], Y) of pointed maps Sm[p−1]→ Y has
the homotopy type of a CW complex for some (and hence all big enough) m. This makes it possible
to interpret the question of eventual H-space exponents in terms of phantom phenomena of mapping
spaces.
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Let S2[p−1] denote the CW complex obtained from the 2-sphere S2 by inverting a sin-
gle prime p . Let Y be a simply connected finite CW complex. It turns out that the space
map∗(S2[p−1], Y) of pointed continuous maps S2[p−1] → Y ‘contains’ all information
about exponents of Y. Namely, the ‘algebra’ of that space carries in some sense the infor-
mation about a possible homotopy exponent for Y at p , i.e. a possible common exponent for
the p -torsion in homotopy groups of Y. What is meant by algebra here is the information
that can be deduced from, for example, the corresponding simplicial mapping space formed
from S2[p−1] and Y considered as simplicial sets.

What is perhaps surprising, though, is that the ‘topology’ of map∗(S2[p−1], Y) governs
the existence of an eventual H-space (also called geometric) exponent at p . Precisely, it
is shown in this paper that Y has an eventual geometric exponent at p if and only if the
topological space map∗(Sm [p−1], Y) = Ωm−2 map∗(S2[p−1], Y) is homotopy equivalent to
a CW complex for all big enough m.

As parallel products we exhibit rather non-trivial examples of CW complexes X and Y
where X is infinite and map(X , Y) either has or does not have the homotopy type of a CW
complex. By Theorem 3 of Milnor [22] (1959), map(K , Y) has the homotopy type of a CW
complex if K is finite. Very little has been done in this direction since, the only published
results being those of Kahn [15] and the author [28]. The examples given here are quite
different, and they depend on the existing results on geometric exponents. The problem

The author was supported in part by the MŠZŠ of the Republic of Slovenia research program
No. P1-0292-0101-04 and research project No. J1-6128-0101-04.
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434 J. Smrekar

of CW homotopy type of the space of continuous functions between two CW complexes
was the author’s motivating problem. Investigating it, the problem of geometric exponents
occurred naturally.

1 Introduction

A simple space Z is said to have a homotopy exponent at the prime p if there exists k such
that pk annihilates the p -primary component of πl(Z ) for all l.

If Z is a homotopy associative H-space then Z is said to have an H-space (or geometric)
exponent if there exists a number b such that the map b : Z → Z , sending z to zb , is
nullhomotopic. Note that if Z has H-space exponent b, then also ΩZ has H-space exponent
b. The space Z is said to have an eventual H-space exponent if the iterated loop spaces ΩmZ
have H-space exponents for all big enough m.

We refer the reader to the survey articles of Neisendorfer and Selick [24], and Cohen
[5] for an introduction to (geometric) exponents and closely related problems in homotopy
theory.

A simply connected finite complex Y is elliptic if πk(Y) is torsion for all but finitely
many k. Otherwise it is hyperbolic. See Félix, Halperin, Thomas [9] for explanations of this
terminology deriving from rational homotopy theory.

A famous conjecture due to John C. Moore asserts a deep relation between homotopy
exponents, eventual H-space exponents, and ellipticity. It naturally splits in two separate
conjectures (called ‘S1’ and ‘S2’ in Selick [26]). The following is one of them. We call it
the ‘geometric Moore conjecture.’

Geometric Moore conjecture. Let Y(p ) denote the localization of the simply connected
finite complex Y at the prime p . The following are equivalent.

(i) The complex Y(p ) admits an eventual H-space exponent.
(ii) The complex Y is elliptic.

The other conjecture states that if Y is hyperbolic, it does not admit a homotopy exponent
at p for any prime p .

The following is our principal result.

Theorem 1.1. Let Y be a simply connected finite complex and let p be a prime. Let Y(p ) denote
the localization of Y at p and let Sm [p−1] denote the localization of the m-sphere away from
the prime p . Furthermore, let K(Z[p−1], m) denote the Eilenberg-MacLane space with the
single nonvanishing homotopy group in dimension m isomorphic with Z[p−1].The following
are equivalent:

(i) The space map∗(Sm [p−1], Y) has CW homotopy type for all big enough m.
(ii) The space map∗(Sm [p−1], Y(p )) is contractible for all big enough m.
(iii) The space ΩmY(p ) admits an H-space exponent for all big enough m.
(iv) The space map∗

(
K(Z[p−1], m), Y(p )

)
is contractible for all big enough m.
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Conventions. All topological spaces will be Hausdorff. The terms map and continuous
function will be used synonymously. If X and Y are spaces, map(X , Y) denotes the space
of maps X → Y equipped with the compact open topology. A fibration (traditionally called
Hurewicz fibration) is a map with the homotopy lifting property for all spaces. Dually, a
cofibration is a map (whose image is closed) with the homotopy extension property for all
spaces.A homotopy equivalence is a continuous map which admits a homotopy inverse. Note
that this actually defines a closed model category structure on the category of all topological
spaces (see Strøm [33] for details). We use also genuine homotopy equivalence to stress
the difference from weak homotopy equivalence which is a map inducing isomorphisms on
all homotopy groups. Spaces Z and W are homotopy equivalent if map(Z , W) contains a
homotopy equivalence. We use � for homotopic maps or homotopy equivalent spaces and
≈ (or simply =) for homeomorphic spaces. The space Z has CW homotopy type if Z � W
for some CW complex W. If Z � {∗} then Z is called contractible.

Let P be a set of primes, and Y a (nilpotent)CW complex. We denote by Y(P) and Y[P−1],
respectively, the localization of Y at P and at the complement of P (also called away from
P). In case of a single prime P = {p}, we use Y(p ) and Y[p−1]. Analogously for groups.

For the purpose of this paper, localizations are defined only up to homotopy type. We
outline a specific model. In the case of a sphere Sm , we may take for Sm [P−1] the mapping
telescope of a sequence of self-maps Sm → Sm → Sm → · · · .The degrees of the maps have
to belong to P and each member of P has to occur infinitely many times. If Y is a countable
CW complex whose 1-skeleton is a point, then Y[P−1] is constructed by inductively ‘local-
izing’ the cells of Y, i.e. by replacing cones of ordinary spheres Sm with cones of localized
spheres Sm [P−1]. The two constructions will be carried out explicitly at the beginning of
§4 and in the proof of Theorem 5.5, respectively. The reader is referred to Sullivan [34] as
well as Hilton, Mislin, Roitberg [12] for more details on localization with respect to a set of
primes.

We topologize map
(
(X , A), (Y, M )

)
= {f ∈ map(X , Y) | f (A) ⊂ M} as subspace of

map(X , Y). Taking A = ∗, M = ∗ yields the space of pointed maps denoted by map∗(X , Y).
Suppressing base-points whenever irrelevant,ΣX andΩY denote, respectively, the reduced
suspension of X and the space of pointed loops on Y, i.e. ΣX is the smash product S1 ∧ X
where S1 is the unit circle in C and ΩY = map∗(S1, Y). Note that whenever X is a pointed
CW complex, ΣX has a canonical CW structure.

Organization. In Section 2 we present the mapping space with domain a countable CW
complex as an inverse limit of a tower of fibrations, and give a brief discussion of invariance
of our results for the choice of topology (topological category).

In Section 3, we study the question of CW homotopy type of an abstract inverse limit
space. We apply the results to function spaces in Section 4 where we prove the equivalence of
(i) – (iii) in Theorem 1.1 as a consequence of Theorem 4.4 (in conjunction with Lemma 4.3).

The equivalence of (ii) and (iv) in Theorem 1.1 is of a different nature, and is contained in
Section 5. It relates the problem of eventual geometric exponents to the genuine homotopy
type of the spaces map∗

(
K(Z[p−1], m), Y(p )

)
. Even their weak homotopy type was not

understood until Zabrodsky’s enhancements of Miller’s proof of the Sullivan conjecture (see
Zabrodsky [35] as well as Roitberg [25]).
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436 J. Smrekar

In Section 6 we represent our results in light of ‘phantom phenomena’. In Appendix A
we prove a handful of technical results concerning the compact open topology.

The theorem of Milnor cited above (Theorem 3 of [22]) will be referred to as Milnor’s
theorem.

Acknowledgement. I would like to thank the editor Fred Cohen for his interest and exem-
plary editorship, and the referee for a meticulous scrutiny of the manuscript and numerous
useful suggestions.

2 The topology and homotopy type of a mapping space

2.1 Inverse limit representation and the loop space of a mapping space

Let X be a countable CW complex and let Y be any space. Let L1 � L2 � · · · be an
increasing filtration of subcomplexes of X (always understood to satisfy X =

⋃
i Li). Set

Z i = map(Li, Y) and let pi : Z i → Z i−1 be the restriction. That is, pi assigns to each
map Li → Y its restriction to Li−1. The inclusion Li−1 ↪→ Li is a cofibration, hence the
restriction pi is a fibration (this is a byproduct of Lemma A.2 below).

Hence {(Z i, pi)} is an inverse sequence of fibrations (also called a tower of fibrations). Let
Z denote the inverse limit space.This is the set of sequences {ζi ∈ Z i} such that pi(ζi) = ζi−1

for each i, topologized as a subspace of the cartesian product
∏

i∈N Z i. If we denote the
canonical projections Pi : Z → Z i then a basis for the topology of Z is given by all sets of
the form (Pi)−1(Ui) where Ui is open in Z i.

The subcomplexes Li dominate the compact subsets of the compactly generated space X
which easily implies that Z is homeomorphic with map(X , Y). Similarly, if x0 ∈ L1 and we
let Z ′i = map

(
(Li, x0), (Y, ∗)) = map∗(Li, Y), then map∗(X , Y) is the inverse limit of Z ′i.

If the subcomplexes Li are finite then the spaces Z i have CW homotopy type by Milnor’s
theorem. By Corollary 2.2, so have the Z ′i. In this case the mapping spaces under investigation
are inverse limits of towers of fibrations between spaces of CW homotopy type.

Let q : E → X be a fibration. Set Ei := q−1(Li) (the Li need not be finite) and
Wi = map(Ei, Y). Note that the collection {Ei} dominates compact subsets of E. Since
Li−1 is cofibered in Li, also Ei−1 is cofibered in Ei. (See Strøm [32], Theorem 12.) If E is
compactly generated then map(E, Y) is homeomorphic with the inverse limit space of {Wi}.
In fact the induced map q∗ : map(X , Y)→ map(E, Y) corresponds to the limit of the maps
q∗i : Z i→ Wi.

2.2 A theorem of Stasheff and some basic corollaries

We state a theorem of Stasheff (crucial for the next section), and some corollaries. One is
the fact that for a connected target space, the space of free maps has CW type if and only
if the space of pointed maps has. Another is that (i) and (ii) of Theorem 1.1 are eventual
notions; if map∗(X , Y) has CW type then so have map∗(ΣmX , Y) for all m.
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Theorem 2.1 (Stasheff [30], Propositions (0) and (12)). Let p : E→ B be a fibration where
the base space B has the homotopy type of a CW complex. Then E has the homotopy type of
a CW complex if and only if all fibers of p have.

Corollary 2.2. Let X and Y be CW complexes and let x0 be a base-point in X . Then
map(X , Y) has CW homotopy type if and only if map

(
(X , x0), (Y, y)

)
has CW type for one

point y in each path component of Y. Consequently if Y is connected this is if and only if
the space of pointed maps map∗(X , Y) has CW type.

Proof. As x0 is nondegenerate in X , evaluation YX → Y at x0 is a fibration.

Lemma 2.3. Let X , Y be pointed CW complexes, and A a subcomplex of X .
(i) map∗(X/A, Y) and map((X , A), (Y, ∗)) are naturally homeomorphic.
(ii) Ω

(
map∗(X , Y), ∗), map∗(ΣX , Y), and map∗(X ,ΩY) are homeomorphic.

Proof. As for (i), the bijection Q : map∗(X/A, Y) → map((X , A), (Y, ∗)) is induced by
q : X → X/A and as such continuous. Note that for every compactum L ⊂ X/A there
exists a compactum K ⊂ X with q(K) = L. This implies that Q is open.

For (ii), the exponential law (see A.1) implies that both Ω
(

map∗(X , Y), ∗) and
map∗(X ,ΩY) are homeomorphic with map((X × S1, X ∨ S1), (Y, ∗)). The latter is homeo-
morphic with map∗(ΣX , Y) by (i).

Corollary 2.4. (i) For any z0, the space Ω(Z , z0) has CW type if Z has.
(ii) In particular, if map∗(X , Y) has CW type then so has map∗(X ,ΩY).

Proof. By Milnor’s theorem, the space of free loops map(S1, Z ) has CW type if Z has.
Evaluation map(S1, Z )→ Z at 1 ∈ S1 is a fibration, hence its fiber over z0 has CW type by
Theorem 2.1. This proves (i).

Taking Z = map∗(X , Y) and z0 = const, (ii) follows from (i) by Lemma 2.3.

2.3 Homotopy invariance and choice of category

By homotopy invariance we mean the following result. (For a proof see Maunder [16],
Theorem 6.2.25.)

Lemma 2.5. Let ϕ : X ′ → X and ψ : Y → Y ′ be homotopy equivalences. The function
map(X , Y) → map(X ′ , Y ′) defined by f �→ ψ ◦ f ◦ ϕ is also a homotopy equivalence.
Analogously for spaces of pointed maps.

There is a ‘competing’ topology for map(X , Y), namely k(map(X , Y)) where k denotes the
compactly generated refinement (see Steenrod [31]). Along with it comes the competing
choice of the ‘convenient topological category’. (Since our spaces are Hausdorff, compactly
generated and weak-Hausdorff k-spaces coincide.)
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Proposition 2.6. (i) k takes homotopy equivalences to homotopy equivalences.
(ii) If a space Z is homotopy equivalent to a compactly generated Hausdorff space, then

the natural map k(Z )→ Z is a homotopy equivalence.
(iii) If X has the homotopy type of a countable CW complex and Y of a metrizable space

then map(X , Y) and k(map(X , Y)) are homotopy equivalent.

Proof. (i) is an easy consequence of the fact k(Z × I ) = k(Z ) × I since the unit segment
I is compact. Then (ii) is a consequence of (i). To prove (iii), use Lemma 2.5 and adapt the
proof of (ii) of Lemma 3.4 of [28].

As every CW complex has the type of a metric simplicial complex, (iii) of 2.6 shows that
our Theorem 1.1 (and other homotopy theoretic results) do not depend on the choice of
topological category. The essence lies in the genuine homotopy type of the mapping spaces
involved. The definition of the convenient topological category (see [31]) makes it clear that
for low-level properties, most of the work has to be done in the classical category Top. Here,
choosing either of the two would have some merit, but it seems that the classical category
is slightly more convenient.

3 Homotopy type of inverse limits

In what follows, we fix an inverse sequence of fibrations

· · · → Z 3
p3−→ Z 2

p2−→ Z 1.(1)

Let Z denote the inverse limit space and pick a point ζ = {ζi} ∈ Z . The following basic
result gives a description of the homotopy groups πk(Z , ζ). For a proof, see for example
Mardešić and Segal [17], Theorem 1 on page 178.

Proposition 3.1. For each number k � 0 there exists a natural exact sequence (of pointed
sets for k = 0 and of groups otherwise)

∗ → lim1 πk+1(Z i, ζi)
φ−→ πk(Z , ζ)

limπk (Pi)−−−−−→ lim πk(Z i, ζi)→ ∗.(2)

In addition, φ is an injection even for k = 0.

Here lim1 denotes the first right derived functor of the inverse limit functor. When k = 0 in
(2) it takes values in the category of sets (it was defined in this generality by Bousfield and
Kan [1]). We will be most interested in its vanishing. For this we recall a definition.

Definition. Let {(Gi, pi : Gi→ Gi−1)} be an inverse sequence of groups. For i < j we let
pij denote the composite pi+1 . . . pj−1pj . The sequence {Gi} satisfies the Mittag-Leffler
condition if for each i0 there is i � i0 so that for each j � i the images of pi0i and pi0j

coincide. In this case we call the image of pi0i stable in Gi0.
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Lemma 3.2. If {Gi} satisfies the Mittag-Leffler condition, lim1 Gi is trivial. If the Gi are
countable, the converse holds as well.

Proof. See [1], Corollary 3.5, as well as [17],Theorems 10 and 11 on pages 173 and 174.

Let Ci denote the path component of ζi in Z i and let C denote the path component of ζ in
the limit space Z . Denoting canonical projections Pi : Z → Z i, note that the restrictions
Pi|C : C→ Ci are also fibrations. Let Fi denote the fiber of C→ Ci over ζi ∈ Ci. Explicitly,
Fi consists of all the sequences η =

{
ηj | j

}
for which η ∈ C and ηj = ζj whenever j � i.

Obviously, therefore, Fj ⊂ Fi for j � i.
A space X is called semilocally contractible if each point of x has a neighborhood U such

that the inclusion U ↪→ X is nullhomotopic. Clearly, the endpoint of the homotopy can be
assumed to equal x .

Note that semilocal contractibility is a homotopy invariant. In particular, since each CW
complex is homotopy equivalent to a metric simplicial complex (see Milnor [22]), each CW
complex is semilocally contractible. (In fact CW complexes are locally contractible in a
strong sense. See for example [10], Theorem 1.3.2.)

Note also that a space has the homotopy type of a CW complex if and only if its path
components are open and each has the homotopy type of a CW complex.

Theorem 3.3. Assume that all the Z i have CW type. If also C has CW type then for each i0
there exists i � i0 such that the inclusions Fj ↪→ Fi0 (and hence the inclusions Fj ↪→ C)
are nullhomotopic for all j � i. If, in addition, C is open, Fj may be assumed to equal the
fiber of Z → Z j over ζj for j � i.

Proof. Note first that Ci0 necessarily has CW type. Hence by Theorem 2.1, the fiber Fi0
has CW homotopy type as well. In particular, it is semilocally contractible. Therefore a
basic neighborhood of ζ in Fi0 contracts in Fi0 . The neighborhood contains one of the form
(Pi)−1(Ui) ∩ Fi0 for some i � i0. The latter contains all fibers Fj for j � i, which finishes
the proof of the first statement.

If C is open, it contains a basic neighborhood of ζ in Z , say (Pi1)−1(Vi1 ). The latter
contains (Pi1 )−1(ζi1 ). Now replace i with max{i, i1}.

Corollary 3.4. Assume the hypotheses of Theorem 3.3. Then

(i) There exists i � 1 so that the morphisms πk(Z , ζ)→ πk(Z j , ζj ) are injective for j � i
and k � 1. If C is also open, then (Pj )−1(Cj ) = C for j � i.

(ii) For each i0 there exists i � i0 such that the images

πk(Z j , ζj )→ πk(Z i0 , ζi0 )

are the same for all j � i and all k � 1. In particular, the morphisms πk(Z , ζ) →
limj πk(Z j , ζj ) are bijective and C is isomorphic with the inverse limit of

{
Cj

}
. If, in

addition, Z has CW type then also the function π0(Z )→ limj π0(Z j ) is bijective.
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Proof. (i) follows from the theorem and the long homotopy exact sequence of the fibration
Fj → C→ Cj (respectively Fj → Z → Z j in case C is also open).

(ii) follows from the theorem by using naturality of the long homotopy exact sequence
of a fibration on the following morphism of fibrations:

Fj C Cj

Fi0 C Ci0

(3)

A diagram chase shows that the images πk(Z j , ζj )→ πk(Z i0 , ζi0 ) coincide for j � i.
This means that the sequences

{
πk(Z j , ζj ) | j } satisfy the Mittag-Leffler condition, and

consequently the lim1 term in the short exact sequence of Proposition 3.1 vanishes by
Lemma 3.2. Thus the morphisms πk(Z , ζ) → limj πk(Z j , ζj ) are bijective for k � 1. The
inverse limit of {Ci} could possibly contain other path-components of Z . That is not the case,
by exactness of (2) for k = 0.

If Z has CW homotopy type then all its path-components have CW type. Using exactness
of (2) for all possible choices of base-points implies injectivity of π0(Z ) → limj π0(Z j ).
This completes the proof.

Corollary 3.5. Assume the hypotheses of Theorem 3.3. IfΩ(Z , ζ) = Ω(C, ζ) is contractible
then for each i0 there exists j � i0 such that the map

Ω(Z j , ζj )→ Ω(Z i0 , ζi0)

is nullhomotopic.

Proof. As Ω(C, ζ) is contractible, C is weakly contractible. Since C has CW type by as-
sumption, it must be contractible. Theorem 3.3 yields j � i0 such that Fj contracts in Fi0 .
Diagram (3) depicts a morphism of fibrations which induces a morphism of the associ-
ated Puppe sequences. Since C is contractible, the connecting maps Ω(Cj , ζj ) → Fj and
Ω(Ci0 , ζi0 )→ Fi0 are homotopy equivalences. By naturality of the Puppe sequence, it fol-
lows that the restriction fibration Ω(Cj , ζj ) → Ω(Ci0 , ζi0 ) is homotopy equivalent to the
map Fj → Fi0 .

The next result is due to Edwards and Hastings (see Geoghegan [11] for details).

Proposition 3.6. Assume given a commutative diagram of topological spaces

. . . W3 W2 W1

. . . Z 3 Z 2 Z 1

p3

f3

p2

f2 f1

r3 r2
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where the pi and ri are fibrations and the maps fi are homotopy equivalences. Then the
induced inverse limit map f∞ : W∞ → Z∞ is also a homotopy equivalence.

Corollary 3.7. Suppose · · · → Z 3 → Z 2 → Z 1 is an inverse sequence. If the maps are
both fibrations and homotopy equivalences, so are the projections Z∞ → Z i.

Corollary 3.8. In order to conclude that W∞ and Z∞ are homotopy equivalent it is enough
to assume commutativity only up to homotopy in Proposition 3.6.

Proof. Construct commutative squares inductively by lifting homotopies.

The following proposition generalizes Lemma 2.8 of Kahn [15], and is crucial for under-
standing the problem of CW homotopy type of inverse limits.

Proposition 3.9. Let · · · → Z 3
r3−→ Z 2

r2−→ Z 1 be an inverse sequence of fibrations and
let Z∞ denote the inverse limit space. If each fibration ri+1 : Z i+1 → Z i is homotopic to a
constant map, then the limit space Z∞ is contractible.

Proof. Let f1 : W1 = Z 1→ Z 1 be the identity, and assume that for some i � 1, a homotopy
equivalence fi : Wi → Z i has been constructed. Let ri+1 : Z i+1 → Z i be homotopic to the
constant ζi ∈ Z i. Let wi be a point in Wi that is mapped by fi into the path component of
ζi. Let PWi denote the space of paths in Wi that start in wi and set Wi+1 = Z i+1 × PWi.

Let pi+1 : Wi+1 → Wi be the composite Z i+1 × PWi
pr−→ PWi

ε−→ Wi where pr is the
obvious projection and ε denotes the evaluation at end point. As a composite of fibrations,
pi+1 is a fibration. Let fi+1 : Wi+1 → Z i+1 be the projection Z i+1×PWi→ Z i+1. Clearly,
fi+1 is a homotopy equivalence. The composite ri+1 ◦ fi+1 is homotopic to constζi

, and the
composite fi ◦ pi+1 is homotopic to constf i(wi). The two constant maps are homotopic by
choice of wi. We proceed inductively, and appeal to Corollary 3.8 to conclude that Z∞ is
homotopy equivalent to W∞ = lim Wi. The latter is homeomorphic to the limit space of the
sequence · · · → PWi+1 → PWi → · · · → PW1 where PWi+1 → PWi are fibrations. By
Corollary 3.7, the limit space is contractible.

4 Spaces of maps out of localized spheres

In this section, let R be a set of primes (possibly empty), and let R′ denote the complement
of R. A group G is said to be R-local if the morphism g �→ gp is bijective for each p ∈ R′.
If G is abelian, this is tantamount to saying that G admits a Z(R)-module structure where
Z(R) is the subring of the rationals consisting of fractions a

b where the prime divisors of b
belong to R′.

A nilpotent CW complex T is called R-local if its homotopy groups are R-local (at all
possible base-points if T is not connected). The reader uncomfortable with nilpotent spaces
may safely assume that T is a simply connected CW complex or an iterated loop space of
such a space. A consequence of the theory of Serre classes is the fact that T is R-local if and
only if its homology groups are R-local. (See [12], page 72.)
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Finally, a map l : T → T ′ of nilpotent CW complexes is said to R-localize if T ′ is R-local
and for every R-local space Y every map T → Y factors, up to homotopy, uniquely through
l : T → T ′. In this case, either the map l or just the complex T ′ is called an R-localization
of T . It turns out that l : T → T ′ is an R-localization if and only if it R-localizes homology
groups.

Every nilpotent CW complex T admits an R-localization which is unique up to homotopy
type and is denoted by T (R). By a slight abuse of notation, T (R) also stands for any specific
CW complex within the homotopy type. There are ways of making R-localization functorial
but we will not need that.

Let P be a nonempty set of primes and let Sm [P−1] denote the localization of the m-sphere
away from the set P.

We construct Sm [P−1] as the reduced infinite mapping telescope of the sequence

Sm p1−→ Sm p2−→ Sm p3−→ · · ·

where the pi belong to P, and each prime in P occurs infinitely many times.
More precisely, we assume Sm [P−1] filtered by a based sequence L0 � L1 � L2 � · · · of

finite subcomplexes each of which is homotopy equivalent to Sm , and for all i, the inclusion
Li−1 � Li corresponds to coH-group multiplication by pi on the sphere Sm . The inclusion
Sm = L0 → colimi Li = Sm [P−1] is the localization map (this is to say the map that
localizes at the complement of P).

If T is any CW complex, then the mapping space map∗(Sm [P−1], T ) can be identified
with the inverse limit of the associated inverse sequence of spaces Z i = map∗(Li, T ). The
bonding fibration Z i→ Z i−1 is the restriction fibration induced by inclusion Li−1 � Li and
is equivalent to H-group multiplication by pi on map∗(Sm , T ) = ΩmT .

In particular, the morphisms πk(Z i, ∗)→ πk(Z i−1, ∗) correspond to multiplication by pi

on πk+m (T ). Here ∗ generically denotes the constant loop.
We call the above inverse limit representation of map∗(Sm [P−1], T ) the standard repre-

sentation. It will be used (for a handful of complexes in place of T ) throughout this section.

Lemma 4.1. Assume that the complex T is R-local where R ∩ P = ∅. The localization
induced fibration map∗(Sm [P−1], T )→ map∗(Sm , T ) = ΩmT is a homotopy equivalence.
In particular, map∗(Sm [P−1], T ) has CW homotopy type.

Proof. As T is R-local, the p -th power map ΩmT
p−→ ΩmT is a homotopy equivalence for

any p ∈ P. (This follows from the definition by virtue of Whitehead’s theorem.) This renders
our standard inverse sequence for map∗(Sm [P−1], T ) one of homotopy equivalences. Now
we use Corollary 3.7.

Another corollary of Stasheff’s theorem is the following
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Proposition 4.2. Consider the pullback diagram

E ′ E

B′ B

f̄

p ′ p

f

where p is a fibration and both B′ and B have CW homotopy type.

(i) If E has CW type then so has E ′.
(ii) If E ′ has CW type and f∗(π0(B′)) ⊃ p∗(π0(E)) then also E has CW type.

Proof. (i) is immediate from Theorem 2.1 since for each b′ ∈ B′, the fibers p ′−1(b′) and
p−1(f (b′)) coincide. The hypotheses of (ii) imply that each nonempty fiber of p is homotopy
equivalent to a fiber of p ′. Hence (ii) also follows from Theorem 2.1.

We use Proposition 4.2 to prove the following lemma.

Lemma 4.3. Let Y be any CW complex. If map∗(Sm [P−1], Y(P)) is path connected, then
map∗(Sm [P−1], Y) has CW type if and only if map∗(Sm [P−1], Y(P)) has.

Proof. The complex Y is homotopy equivalent to the homotopy pullback of the diagram
Y[P−1]→ Y(0) ← Y(P). Not changing the homotopy type of the spaces involved we may as-
sume that the natural maps Y[P−1]→ Y(0) and Y(P) → Y(0) are fibrations. Since map∗(X , )
preserves pull-backs (see Lemma A.3), map∗(Sm [P−1], Y) is homotopy equivalent to the
pullback of

map∗(Sm [P−1], Y[P−1])→ map∗(Sm [P−1], Y(0))← map∗(Sm [P−1], Y(P)).

Both maps above are fibrations (see for example Lemma A.4). An application of Lemma 4.1
and Proposition 4.2 finishes the proof.

Theorem 4.4. Let P be a nonempty set of primes, and let Y be a simply connected finite
complex.
(i) If map∗(Sm [P−1], Y) has CW type then Y is elliptic, map∗(Sm[P−1], Y(P)) is con-

tractible, and Ωm+1Y(P) has an H-space exponent.
In addition, H̃ ∗(Y; Zp ) �= 0 for at most finitely many p ∈ P. In particular, if Hk(Y) is
infinite for some k � 1, then P is finite.

(ii) If ΩmY(P) has an H-space exponent, then map∗(Sm [P−1], Y) has CW type.

Proof. Assume that map∗(Sm [P−1], Y) has CW homotopy type. By (ii) of Corollary 3.4,
there exists i � 0 such that the images of πk(Z j , ∗)→ πk(Z 0, ∗) are the same for all j � i
and all k � 1. Set b = pip i−1 . . . p2p1. Then

∀ j > i ∀ k � 1 : pj p j−1 . . . pi+1(b · πk+mY) = b · πk+mY.(4)
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This exhibits the groups b ·πk+m(Y), for k � 1, as P-divisible.As they are finitely generated,
they must be finite groups with trivial P-torsion. This means that for l � m + 1, the group
πl(Y) is finite and b annihilates its P-primary part. In particular, Y is elliptic.

If H̃ ∗(Y; Zp ) �= 0 then by generalized Serre’s theorem (McGibbon and Neisendorfer
[19]), infinitely many groups πl(Y) contain a subgroup of order p . There can only be finitely
many such p that also belong to P, namely, precisely the prime divisors of b.

We continue the proof of the first statement. By the above, πm+k (Y(P)) is a finite P-group
bounded by b, for every k � 1. Hence Lemma 3.2 and Proposition 3.1 imply that for each
k � 0, the group πk(map∗(Sm [P−1], Y(P)), ∗) is isomorphic with the inverse limit of

· · · p3−→ πm+kY(P)
p2−→ πm+kY(P)

p1−→ πm+kY(P).

As no element of πm+kY(P) is infinitely divisible by a prime belonging to P it follows that
map∗(Sm [P−1], Y(P)) is weakly contractible.

By Lemma 4.3, the space map∗(Sm [P−1], Y(P)) has CW homotopy type and as such
is contractible. By Corollary 3.5, for some j and β = pj . . . p1, the β-th power map

Ωm+1Y(P)
β−→ Ωm+1Y(P) is nullhomotopic. This completes the proof of (i).

For (ii), assume that the power map ΩmY(P)
b−→ ΩmY(P) (where all the prime divisors of b

belong to P) is nullhomotopic. Then clearly, a subsequence of the standard inverse sequence
for map∗(Sm[P−1], Y(P)) is one of nullhomotopicmaps. Hence by Proposition 3.9, the space
map∗(Sm [P−1], Y(P)) is contractible, and by Lemma 4.3, the space map∗(Sm [P−1], Y) has
CW homotopy type.

We applyTheorem 4.4 to a couple of intriguing examples.The first exploits (i) of the theorem.

Example 1. The mapping space map∗(M (Q, m), Sn ) does not have CW type for any m. In
particular, for m > n the space is weakly contractible but not contractible.

Since Ω
(

map∗(M (Q, m), Sn ), ∗) ≈ map∗(M (Q, m + 1), Sn) (see Lemma 2.3), the situ-
ation does not ‘improve’ after looping.

The next example follows from (i) and (ii) of the theorem by exploiting results from the
theory of H-space exponents.

Example 2. For all large enough m, the mapping space map∗(Sm [p−1], Sn ) has the homotopy
type of a CW complex (and is homotopy equivalent toΩmSn[p−1]).

This follows from the fact that ΩlSn
(p ) has an H-space exponent for all large enough l.

When n and p are odd, this is due to Cohen, Moore, Neisendorfer (see [3], Corollary 1.6),
and the case n odd, p = 2 is due to Cohen (see [4], Corollary 5.2). This implies the case
of even n: for p = 2 using the 2-local EHP sequence of James (see [13] and [14]), and for
p > 2 using Serre’s p -local (homotopy) fibrations S2k−1

(p ) → S4k−1
(p ) → S2k

(p ) (see [27]).
Let W denote the localization at p of the n-connected cover of Sn . It was shown by

Neisendorfer and Selick [24] that Ωn−3W does not have an H-space exponent. However,
Ωn−2W does, see Neisendorfer [23].
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In particular, the space map∗(Sn−4[p−1], W) does not have the type of a CW complex,
and the space map∗(Sn−2[p−1], W) does.

As a consequence we infer

Proposition 4.5. Let Y be an elliptic simply connected finite complex. For all large enough
m and almost all primes p the mapping space map∗(Sm [p−1], Y) has the homotopy type of
a CW complex.

Proof. By McGibbon and Wilkerson [20] the loop space ΩY is p -equivalent to a finite
product of spheres and loop spaces of spheres, for almost all primes p . Our assertion now
follows from Theorem 4.4 and the previous example.

If P and Q are sets of primes with Q ⊂ P, then a natural question is whether
map∗(Sm [Q−1], Y) has CW homotopy type if map∗(Sm [P−1], Y) has. The remaining part of
this section will be devoted to showing that this is indeed the case. To prove this, we will
develop a characterization of CW homotopy type of map∗(Sm [P−1], Y) for an arbitrary CW
complex Y.

Suppose that m � 2. Then the cofibration Sm → Sm [P−1] is principal, i.e., it can be
obtained (up to homotopy) as the mapping cone of a map ϕ : M → Sm . We get an induced
pullback diagram:

map∗(Sm [P−1], Y) map∗(CM , Y)

map∗(Sm , Y) map∗(M , Y)
ϕ∗

Here CM denotes the cone of M . By Lemma 2.5, the space map∗(CM , Y) is contractible.
Hence map∗(Sm [P−1], Y) → map∗(Sm , Y) is a principal fibration whose fibers are either
empty or homotopy equivalent to the fiber of map∗(CM , Y)→ map∗(M , Y) over the constant
map. The latter is homeomorphic with map∗(ΣM , Y) by (i) of Lemma 2.3. By Theorem 2.1,
therefore, map∗(Sm [P−1], Y) has CW homotopy type if and only if map∗(ΣM , Y) has.

Let M (A, m) denote the Moore complex with the single nonvanishing homology group
A in dimension m. Note that ΣM � Sm [P−1]/Sm is a space of type M (Z[P−1]/Z, m).
Recall that the quotient Z[P−1]/Z is isomorphic with the direct sum of quasicyclic groups⊕

p∈P Zp∞ . The composite of homotopy equivalences

ΣM → M (Z[P−1]/Z, m)→ M (
⊕

p∈P
Zp∞ , m)→ ∨

p∈P
M (Zp∞ , m)

induces a homotopy equivalence
∏

p∈P map∗
(
M (Zp∞ , m), Y

) → map∗(ΣM , Y). Here it
was used that for any family of CW complexes {Xλ |λ}, the mapping space map∗(

∨
λ Xλ , Y)

is homeomorphic with the cartesian product
∏
λ map∗(Xλ, Y). (The evident function

map∗(
∨
λ Xλ, Y)→ ∏

λ map∗(Xλ , Y) is bijective by virtue of the weak topology, and open
by virtue of closure finiteness of the wedge

∨
λ Xλ.)
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Proposition 4.6. Let Y be a CW complex, let P be a set of primes and m � 2. The following
are equivalent.
(i) map∗(Sm [P−1], Y) has CW homotopy type.
(ii)

∏
p∈P map∗

(
M (Zp∞ , m), Y

)
has CW homotopy type.

(iii) For each p ∈ P, the space map∗
(
M (Zp∞ , m), Y

)
has CW homotopy type, and all but

finitely many are contractible.

Proof. The equivalence of (i) and (ii) has been proved above.
To show that (iii) implies (ii), note first that the product of arbitrarily many contractible

spaces is contractible. Now the implication follows from the fact that the product of finitely
many spaces of CW homotopy type has itself CW homotopy type (see [22], Proposition 3).

To show that (ii) implies (iii), recall first that a space that is homotopy dominated by a
CW complex has itself the homotopy type of a CW complex (see Milnor [22], Theorem 2).
Assuming (ii) it follows that map∗

(
M (Zp∞ , m), Y

)
has CW homotopy type for each p ∈ P.

Now it is a consequence of Theorem 3.3 that all but finitely many are actually contractible.

Corollary 4.7. If P and Q are sets of primes with Q ⊂ P then map∗(Sm [Q−1], Y) has CW
homotopy type if map∗(Sm [P−1], Y) has.

Corollary 4.8. Let Y be a simply connected finite complex, P a set of primes, and m � 2.
Then map∗(Sm [P−1], Y) has CW homotopy type if and only if map∗(Sm [p−1], Y) has CW
type for each p ∈ P, and H̃ ∗(Y; Zp ) �= 0 for at most finitely many p ∈ P.

Proof. Use Proposition 4.6 in conjunction with Theorem 4.4. (Observe that if
H̃ ∗(Y; Zp ) = 0 then the homotopy groups of map∗

(
M (Zp∞ , m), Y

)
vanish.)

5 Spaces of maps out of Eilenberg-MacLane complexes

Proposition 5.1. Let E → B be a fibration where B has the homotopy type of a connected
countable CW complex, and E is compactly generated. Let F be a fiber and let X be any
space. If X → map(F , X ) is a homotopy equivalence, then so is map(B, X )→ map(E, X ).

The proposition analogous to 5.1 that assumes weak contractibility, and infers weak homo-
topy equivalence is known as ‘the Zabrodsky lemma’ (see Miller [21], §9 or McGibbon [18],
Lemma 5.5). Proposition 5.1 assumes genuine contractibility and infers genuine homotopy
equivalence and could perhaps be named the ‘genuine Zabrodsky lemma.’

Remark 5.2. First note that the hypotheses of Proposition 5.1 imply that F is compactly
generated. Let y0 be a base-point of F , and let ε0 : map(F , X )→ X denote the evaluation
ε0 : f �→ f (y0).As ε0 is a (pointwise) left inverse for the section X → map(F , X ), one of the
two is a homotopy equivalence if and only if the other is. If y0 is a nondegenerate base-point
in F , then ε0 is a fibration. In this case by Theorem 6.3 of Dold [6] for any connected space
X of CW type:
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(i) map∗(F , X ) is contractible if and only if ε0 is a homotopy equivalence.
(ii) map(B, X ) → map(E, X ) is an equivalence if and only if map∗(B, X ) → map∗(E, X )

is.

In ‘most’ cases we may assume that F has a nondegenerate base-point. Notably, if (Y, y0)
g−→

(B, b0) is a map of well-pointed spaces, then the base-point (y0, constb0 ) is nondegenerate
in the homotopy fiber of g (viewed as subspace of Y ×map(I , B)).

Our proof of Proposition 5.1 is essentially that of Lemma 1.5 of Zabrodsky [36] modulo
some care about genuine homotopy type.

Proof of Proposition 5.1. Consider first a projection pr : T × F → T where T is compact.
As F is compactly generated, map(T , X )→ map(T × F , X ) is equivalent to map(T , X )→
map

(
T , map(F , X )

)
by Lemma A.1. The latter is a homotopy equivalence by Lemma 2.5.

We want to exploit this in conjunction with the fact that every fibration over a contractible
base space is trivial, i.e., equivalent to a projection.

To this end, we replace B with a homotopy equivalent locally finite countable simplicial
complex B′. (See Fritsch and Piccinini [10], Theorem 5.2.3.) By pulling back over a homo-
topy equivalence B′ → B and appealing to Corollaries 1.4 and 1.5 of Brown, Heath [2] we
get a homotopy equivalent fibration E ′ → B′. As B′ is locally compact and E is compactly
generated, the product B′ × E is also compactly generated (see Steenrod [31], 4.3), and
hence so is its closed subset E ′. By virtue of Lemma 2.5 we may assume that B′ = B and
E ′ = E.

Pick a filtration B0 � B1 � B2 � · · · for B where B0 is a vertex and Bi is obtained
from Bi−1 by adjunction of a simplex. Set Ei = E|Bi where E|K denotes p−1(K). The map
p∗ : map(B, X ) → map(E, X ) can be identified with the limit of maps p∗i : map(Bi, X )→
map(Ei, X ). (Recall the paragraph preceding subsection 2.2 on page 436.) In light of Propo-
sition 3.6 it is therefore enough to prove the following. Suppose L and L ′ are subcom-
plexes of B such that L ′ = L ∪ σ where σ is a simplex (possibly also a vertex) with
∂σ ⊂ L. If map(L, X )→ map(E|L , X ) is a homotopy equivalence, then so is map(L ′, X )→
map(E|L ′ , X ).

Note E|L ′ = E|L ∪ E|σ. Since σ is contractible, there exists a fiber homotopy equiva-
lence σ × F → E|σ (over σ). In particular this equivalence restricts to a (fiber) homotopy
equivalence ∂σ × F → E|∂σ.

Thus there exists the following commutative diagram.

map(E|L ′ , X ) map(E|σ , X ) map(σ×F , X )

map(L′ , X ) map(σ, X )

map(E|L , X ) map(E|∂σ , X ) map(∂σ×F , X )

map(L, X ) map(∂σ, X )

�

�
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Since σ × F → E|σ is a map over σ, the composite map(σ, X ) → map(E|σ, X ) →
map(σ × F , X ) is induced by the projection σ × F → σ. Similarly for the composite
map(∂σ, X )→ map(E|∂σ, X )→ map(∂σ × F , X ).

Since the projection induced maps map(σ, X ) → map(σ × F , X ), respectively
map(∂σ, X )→ map(∂σ×F , X ), are homotopy equivalences, so are the maps map(σ, X )→
map(E|σ, X ), respectively map(∂σ, X ) → map(E|∂σ, X ). By assumption, map(L, X ) →
map(E|L , X ) is a homotopy equivalence. The cube in the diagram is a morphism of pullback
diagrams with vertical arrows fibrations, so by coglueing homotopy equivalences [2] also
the map (of pullback spaces) map(L ′, X )→ map(E|L ′ , X ) is a homotopy equivalence.

It is not difficult to show that in Proposition 5.3, it suffices for E to be homotopy equivalent
to a compactly generated space. However, the targeted result here is Corollary 5.3 (which
is a special case). We prove it by a more direct argument.

Corollary 5.3. Let f : A → B be a map of pointed countable CW complexes where B
is connected. Let F be the homotopy fiber of f with its natural base-point. If X is a
pointed space such that map∗(F , X ) is contractible, then f ∗ : map∗(B, X )→ map∗(A, X ) is
a homotopy equivalence.

Proof. The map f is equivalent to a map f ′ : A ′ → B′ of locally finite simplicial complexes.
(Use [10], Theorem 5.2.3.) The homotopy fibers of f and f ′ are homotopy equivalent (as

pointed spaces). By Lemma 2.5 we may assume A = A ′ and B = B′. Let A
g−→ E

p−→ B be
the canonical factorization of f where g is a homotopy equivalence and p is a fibration. By
definition, F is a fiber of p and E is a subspace of A × map(I , B). Note that A and B are
metrizable. Next, the space of free paths map(I , B) is metrizable by virtue of the supremum
metric. Thus E is metrizable and hence compactly generated. Now apply Proposition 5.1
and Remark 5.2.

Corollary 5.4. Let X be a connected countable CW complex and let Y be any CW complex.
If map∗(ΩX , Y) is contractible, so is map∗(X , Y).

Let X → X (P) be localization at the set of primes P. If Y is a P-local complex, then the
natural map map(X (P), Y) → map(X , Y) is a weak homotopy equivalence. This is a basic
fact in the theory of homotopy localization. It is not so obvious, however, that the map is
actually a genuine homotopy equivalence.This has been proved in Lemma 4.1 for X a sphere
which we use to tackle the general case:

Theorem 5.5. Let P be a set of primes and let X be a simply connected countable CW
complex. Let Y be a P-local complex. The mapping map(X (P), Y)→ map(X , Y) induced by
localization X → X (P) is a genuine homotopy equivalence.

Remark 5.6. We emphasize here that in Theorem 5.5, the complex X is not assumed to be
finite, and that the space map(X , Y) need not have CW homotopy type.

Proof. Possibly replacing X with a homotopy equivalent CW complex we can assume that
X has trivial 1-skeleton and, for simplicity, that all characteristic maps are based. Then
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X has a based filtration L0 � L1 � L2 � · · · where L0 is a point and Li−1 → Li is
the adjunction of a single cell of some dimension not smaller than 2. Then X (P) may be
obtained by successive adjunctions of ‘local cells’ (see Sullivan [34], proof of Theorem
2.2) which we now describe. Set L ′0 = L0. Assume that we have already constructed a CW
complex inclusion λi−1 : Li−1 � L ′i−1 which localizes homology and induces a homotopy
equivalence map(L ′i−1, Y) → map(Li−1, Y). The complex Li is the mapping cone of the
characteristic map ϕi : Sm → Li−1 of the corresponding cell. As L ′i−1 is P-local there exists
a map (unique up to homotopy)ϕ′i : Sm

(P) → L ′i−1 making the following square commutative
up to homotopy.

Sm Li−1

Sm
(P) L ′i−1

ϕi

λi−1

ϕ′i
ψ′i

(5)

By cellular approximation, ϕ′i may be assumed to map into the m-skeleton L ′i−1
(m). Also

λi−1 ◦ ϕi maps into L ′i−1
(m), and since Sm → Sm

(P) is a cofibration, the homotopy exten-

sion property yields ψ′i : Sm
(P) → L ′i−1

(m) (homotopic to ϕ′i) making the diagram strictly
commutative. Let L ′i be the mapping cone of ψ′i : Sm

(P) → L ′i−1 and let λi : Li → L ′i denote
the induced subcomplex inclusion. A standard application of the five lemma shows that λi

localizes homology. On mapping spaces, we get an induced map of pullback diagrams (the
front and the back square):

map(Li, Y) map(CSm , Y)

map(L ′i, X ) map(CSm
(P), Y)

map(Li−1, Y) map(Sm , Y)

map(L ′i−1, Y) map(Sm
(P) , Y)

By Lemma 4.1, the mapping map(Sm
(P), Y)→ map(Sm , Y) is a homotopy equivalence. The

cones CSm
(P) and CSm are contractible, so by Lemma 2.5, the mapping map(CSm

(P), Y) →
map(CSm , Y) is equivalent to the identity Y → Y and as such is a homotopy equivalence.
By inductive hypothesis, also map(L ′i−1, Y) → map(Li−1, Y) is a homotopy equivalence.
All four vertical arrows are fibrations, hence by coglueing homotopy equivalences [2], also
map(L ′i, Y)→ map(Li, Y) is a homotopy equivalence. Letting X ′ denote the union (=colimit)
of the complexes L ′i, we see that the colimit map λ : X → X ′ localizes homology which
renders X ′ a valid complex of type X (P). Finally, the mapping map(X ′, Y)→ map(X , Y) is the
inverse limit of mappings map(L ′i, Y)→ map(Li, Y). As such, it is a homotopy equivalence
by Proposition 3.6.
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Proposition 5.7. Let p be a prime and let Y be any simply connected CW complex. The
following are equivalent.
(i) The space map∗(Sm [p−1], Y(p )) is contractible for all big enough m.
(ii) The space map∗

(
K(Z[p−1], m), Y(p )

)
is contractible for all big enough m.

Proof. First note that by Corollary 5.4, also (ii) is an ‘eventual property’. That is, if
map∗

(
K(Z[p−1], m), Y(p )

)
is contractible, so is map∗

(
K(Z[p−1], m + 1), Y(p )

)
. Fixing

a large odd integer m we obtain the following sequence of homotopy equivalences.

map∗(Sm [p−1], Y(p )) � map∗(M (Q, m), Y(p ))

= map∗(K(Q, m), Y(p )) � map∗(K(Z[p−1], m), Y(p ))

(6)

The first and the last follow from Theorem 5.5 and Remark 5.2. The middle ‘equality’ holds
because m is odd.

Remark. Proposition 5.7 shows that (ii) and (iv) of Theorem 1.1 are equivalent. As the
equivalence of (i) – (iii) is contained inTheorem 4.4, this completes the proof ofTheorem 1.1.

The short exact sequence Z→ Z[p−1]→ Zp∞ induces a homotopy fibration

K(Z[p−1], m)→ K(Zp∞ , m)
ω−→ K(Z, m + 1).(7)

Corollary 5.8. Let Y be a simply connected finite complex and let p be a prime. If Y(p )
has an eventual geometric exponent then the mapping ω∗ : map∗(K(Z, m + 1), Y(p )) →
map∗(K(Zp∞ , m), Y(p )) is a homotopy equivalence for all big enough m.

Proof. This is an immediate consequence of Theorem 1.1 and Corollary 5.3.

If Y is elliptic, Miller’s theorem on maps out of classifying spaces implies that
map∗(K(Zp∞ , m), Y(p )) is weakly contractible, and, if Y has an eventual geometric ex-
ponent at p then by Corollary 5.8, map∗(K(Zp∞ , m), Y(p )) is genuinely contractible for all
big enough m if and only if map∗(K(Z, m), Y(p )) is. The author of this paper does not even
know if this is true in case Y is a sphere. However, speculation about this is tempting because
of the following lemma.

Lemma 5.9. If for some m, the space map∗(K(Z, m), Y(p )) is contractible, so also is
map∗(Sm [p−1], Y(p )). Consequently Y has an eventual geometric exponent at p .

Proof. View K(Z[p−1], m) as the homotopy colimit of the sequence K(Z, m)
p−→

K(Z, m)
p−→ K(Z, m)

p−→ · · · . Apply map( , Y(p )) to the stages of the corresponding
telescope and use Corollary 3.5 to infer that map∗(K(Z[p−1], m), Y(p )) is contractible if
map∗(K(Z, m), Y(p )) is. Proposition 5.7 finishes the proof.

Remark 5.10. If R is an infinite set of primes and Hk(Y) is infinite for some k, certainly
map∗(K(Z, m), Y(R)) is not contractible for any m. Namely, as in the proof of the preced-
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ing lemma, it would follow that map∗(M (Q, m), Y(R)) is contractible for big enough m,
contradicting (i) of Theorem 4.4.

6 Phantom phenomena

Let X and Y be CW complexes. Say that maps f , g : X → Y are equivalent, f ∼ g, if the
restrictions f |K : K → Y and g|K : K → Y are homotopic for every finite subcomplex K
of X . This is clearly an equivalence relation and each equivalence class is the union of a
number of path components. If f ∼ g while f and g belong to different path components, f
and g are called a (nontrivial) phantom pair. The reader is referred to the survey article of
McGibbon [18] for more information on phantom maps.

Clearly we could introduce the relation on path components of map(X , Y): path compo-
nents C and D are equivalent if their images – also path components – under restrictions to
map(K , Y) coincide. Here K has to range over some cofinal family of finite subcomplexes
of X . In case X is countable, therefore, K can range over {Li} where L1 � L2 � · · · is an
ascending filtration of finite subcomplexes for X .

Denote as usual Z i = map(Li, Y) and Z = map(X , Y), and let Ci be the image of the
path component C under Z → Z i. Then the equivalence class of the path component C is
precisely the preimage of {Ci} under the natural map π0(Z )→ limi π0(Z i). For each i, let
ζi be the image of ζ ∈ C in Z i. By virtue of the short exact sequence (2) we can identify the
equivalence class of C with lim1

iπ1(Z i, ζi) = lim1
iπ1(Ci, ζi). We call the equivalence class

of C the phantom class of C, and denote it by Ph(C). Then C is called a phantom component
if Ph(C) ≡ lim1

iπ1(Ci, ζi) is nontrivial.
Hence, the space Z = map(X , Y) is devoid of phantom maps if and only if the

lim1
iπ1(Z i, ζi) vanish for all possible choices of ζ = {ζi} ∈ Z . If the homotopy groups

of Y (and hence of Z i) are countable this is if and only if the sequences {π1(Z i, ζi) | i} satisfy
the Mittag-Leffler condition for all possible choices of ζ, by Lemma 3.2.

Switching now to an abstract inverse sequence of fibrations {Z i} with limit space Z , we
can still talk about phantom classes and phantom path components of Z (with respect to
the inverse sequence). Assume that the Z i have CW homotopy type. Then if Z also has CW
homotopy type, all phantom classes are trivial and Z has no phantom components by (ii) of
Corollary 3.4. More than that, the lim1

iπk(Z i, ζi) are trivial for all k � 1.
This has a geometric interpretation when Z = map∗(X , Y) is the space of pointed maps.

Taking ζ = const, the vanishing of lim1
iπk(Z i, const) is equivalent to nonexistence of

(pointed) phantom maps Σk−1X → Y or, equivalently, X → Ωk−1Y. One could say that in
this case Z is stably free of phantom maps.

However, note that (ii) of Corollary 3.4 is saying even more. Namely, the sequences
{πk(Z i, ζi) | i} satisfy the Mittag-Leffler condition uniformly in k, i.e. for each i0 there is
i > i0 such that the image of πk(Z i, ζi)→ πk(Z i0 , ζi0 ) is stable for each k � 1.

Consider the space Z = map∗
(
M (Q, m), Sn

)
from Example 1 on page 444. Assume that

m > n. By our standard representation, Z is the limit of a certain sequence {Z i} where for
each i, the space Z i � ΩmSn has finite homotopy groups. Hence, all sequences πk(Z i, ζi)
satisfy the Mittag-Leffler condition. (In fact Z is weakly contractible.) However, Serre’s
theorem on torsion in homotopy groups of spheres as applied in the proof of Theorem 4.4



�

�
“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2010/2/12 — 13:52 — page 452 — #20

�

�

�

�

�

�

452 J. Smrekar

shows that the sequences πk(Z i, ζi) cannot satisfy the Mittag-Leffler condition uniformly
with respect to k.

As a contrast, consider the tower of Eilenberg-MacLane spaces Z i = K(Zpi , 1):

· · · → K(Zp3 , 1)→ K(Zp2 , 1)→ K(Zp , 1)

where K(Zpi+1 , 1)→ K(Zpi , 1) is induced by the modpi morphism Zpi+1 → Zpi . Clearly,
the sequences in question satisfy the uniform Mittag-Leffler condition. However, this se-
quence violates (i) of Corollary 3.4 hence the limit space Z does not have CW homotopy
type. Explicitly, Z is weakly equivalent to (S1)∧p = K(Z∧p , 1) but not genuinely homotopy
equivalent.

Definition. Let X and Y be pointed countable CW complexes, and let ∗ = L1 � L2 � · · ·
be a pointed filtration of finite subcomplexes for X .

(i) The space map∗(X , Y) is stably phantomless if for each map ζ the sequence

{
πk

(
map∗(Li, Y), ζi

) | i}(8)

satisfies the Mittag-Leffler condition for each k � 1.

(ii) The space map∗(X , Y) is uniformly phantomless if the sequences (8) satisfy the Mittag-
Leffler condition uniformly with respect to k � 1.

By (ii) of Corollary 3.4, if map∗(X , Y) has CW homotopy type then it is uniformly phan-
tomless. Clearly, if map∗(X , Y) is uniformly phantomless then it is stably phantomless.
The examples exhibited above show that the converse is false in both cases. However, the
geometric Moore conjecture can be restated as follows.

Conjecture 6.1. Let Y be a simply connected finite complex and let p be a prime. The
following are equivalent.

(i) The space map∗(Sm [p−1], Y) has CW homotopy type for some m.
(ii) The space map∗(Sm [p−1], Y) is uniformly phantomless for some m.
(iii) The space map∗(Sm [p−1], Y) is stably phantomless for some m.

An inspection upon the proof ofTheorem 4.4 shows that (iii) of 6.1 is equivalent to ellipticity
of Y, and that (ii) holds if and only if Y is elliptic and has a homotopy exponent at p . The
details are left to the reader.

What is interesting here is the fact that in the setting of function spaces, (ii) seems to be
a natural property that squeezes in between (i) and (iii), and combines both ellipticity and
the existence of a homotopy exponent.

A Auxiliary results

The purpose of Appendix A is to supply proofs of a handful of results dealing with fibra-
tions and the compact open topology. (Of the existing literature, the traditional leans on
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local compactness while the modern resorts to ‘convenient’ topological categories. We use
neither.)

LemmasA.2 and A.4 are most easily proved by employing the concept of a lifting function
which we recall first.

Let FP E = map(I , E) denote the space of free paths into E.

Definition. Let p : E → B be a map and let ε0 : FP B → B denote evaluation at 0. Let

Ē = E p �ε0 FP B = E � FP B be the pullback of E
p−→ B

ε0←− FP B. A lifting function for p
is a map λ : Ē→ FP E that makes the following diagram commute.

Ē FP B

FP E

E B

λ

ε0

p∗

ε0

p

(9)

Note that since the square is a pullback, there is a natural map ν : FP E → Ē, and the
universal property forces the pointwise identity νλ = id. Recall that p has a lifting function
if and only if it is a fibration. (See Fadell [8].)

Lemma A.1. Let X ×Y be compactly generated and let Z be a space. Then map(X × Y, Z )
and map(X , map(Y, Z )) are naturally homeomorphic.

Proof. See Dugundji [7], Theorem XII.5.3.

Lemma A.2. Let X be a compactly generated space, and let L and A be two cofibered
subspaces. Let (Y, M ) be any pair. The restriction

map
(
(X , L), (Y, M )

)→ map
(
(A, L ∩ A), (Y, M )

)
(10)

is a fibration with a lifting function that is functorial in (Y, M ).

Proof. Set E = map
(
(X , L), (Y, M )

)
and B = map

(
(A, L ∩ A), (Y, M )

)
. The spaces FP E

and FP B can be identified with map
(
(X × I , L × I ), (Y, M )

)
and map

(
(A × I , (L ∩ A) ×

I ), (Y, M )
)
, respectively, since X and L are compactly generated (see Lemma A.1). Eval-

uation ε0 : FP E → E can be identified with restriction to X × 0 ≡ X , and similarly for
ε0 : FP B→ B. The pullback Ē = E � FP B can be identified with map

(
(X × {0} ∪ A × I ),

L × {0} ∪ (A ∩ L)× I , (Y, M )
)
.

Since both L and A are cofibered in X , there exists a retraction

ρ : (X × I , L × I )→ (X × {0} ∪ A × I , L × {0} ∪ (A ∩ L)× I ).
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Then λ : Ē→ FP E, λ(f ) = f ◦ ρ, is a lifting function for E→ B. If (Y ′, M ′) is another pair
then set E ′ = map

(
(X , L), (Y ′ , M ′)

)
and similarly for B′. Clearly, a map of pairs (Y, M )→

(Y ′, M ′) induces a morphism of restriction fibrations, and consequently also a morphism of
lifting-function diagrams (9).

Lemma A.3. Let X be any space. The functors map(X , ) and map∗(X , ) preserve topolog-

ical pull-back squares. Precisely, if A is the pullback of B
β−→ D

γ←− C, then map(X , A) is the

pullback of map(X , B)
β∗−→ map(X , D)

γ∗←− map(X , C). If the spaces and maps involved are

pointed, then map∗(X , A) is the pullback of map∗(X , B)
β∗−→ map∗(X , D)

γ∗←− map∗(X , C).

Proof. The natural map F : map(X , B×C)→ map(X , B)×map(X , C) is a homeomorphism
(see Maunder [16], Theorem 6.2.34), and it is trivial to check that F(map(X , B � C)) =
map(X , B) �map(X , C).

Lemma A.4. Let p : E→ B be a fibration and let X be a compactly generated space. Then
the induced map p∗ : map(X , E)→ map(X , B) is a fibration with a lifting function that is
functorial in X .

If, in addition, p is a pointed map of well-pointed spaces, then also the map
p∗ : map∗(X , E)→ map∗(X , B) is a fibration, for any choice of base-point in X .

Proof. Let λ : Ē→ FP E be a lifting function for p . We apply map(X , ) to diagram (9) and
denote Λ = map(X ,λ). We use Lemma A.3 to view the domain of Λ as map(X , E) �
map(X , FP B). As X is compactly generated, so is X × I , and therefore map(X , FP B)
and map(X , FP E) are homeomorphic to, respectively, FP map(X , B) and FP map(X , E) by
Lemma A.1. Thus Λ is a lifting function for p∗, and it is clearly functorial in X .

If p (e0) = b0 and e0, b0 are nondegenerate, then ē = (e0, constb0 ) is nondegenerate in
E � FP B, and consequently λ may be chosen so that λ(ē) = conste0 . The function Λ is a
lifting function for p∗ : map∗(X , E)→ map∗(X , B).
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