Leandro F. Pessoa: The intersection problem for minimal surfaces in R^3

Date of publication: 14. 10. 2022
Complex analysis seminar
Predavalnica 3.06
ID: 940 4904 5946 – Password: 723320

V torek, 18. oktobra ob 12. uri in 30 minut, bo v okviru seminarja za kompleksno analizo predaval prof. Leandro F. Pessoa z Univerze v Bielefeldu in Universidade Federal do Piaui, Brazilija.

Title: The intersection problem for minimal surfaces in R^3.

Abstract: After a brief discussion about the intersection problem for minimal surfaces in the Euclidean space we will present a version of the strong half-space theorem between the classes of recurrent minimal surfaces and complete minimal surfaces with bounded curvature of R^3. We also consider an extension for cmc-surfaces showing that a stochastically complete surface M cannot be in the mean convex side of a H-surface N embedded in R^3 with bounded curvature if sup |H_M | < H. Finally, if time permits we will show a maximum principle at infinity for the case where M has non-empty boundary..

Predavanje bo potekalo HIBRIDNO, v predavalnici 3.06 na Jadranski 21 in preko aplikacije ZOOM:


Meeting ID: 940 4904 5946 Passcode: 723320

Vljudno vabljeni!

Vodji seminarja

Franc Forstneric in Barbara Drinovec Drnovsek