Andrej Bauer: Countable reals – part I
Date of publication: 24. 10. 2022
Mathematics and theoretical computing seminar
Thursday
27
October
Time:
10:00
Location:
Jadranska 21, 4.35
Abstract: Cantor's theorem about uncountability of the reals can be proved using excluded middle or countable choice. But can it be proved without either of them? I will present joint work with James E. Hanson in which we give the answer by constructing a topos, i.e., a model of intuotionistic higher-order logic, in which the Dedekind reals are countable. There are two main ingridients:
- A result in computability theory, established by Joseph S. Miller, that there exists a sequence of reals against which oracle Turing machines cannot diagonalize uniformly in the oracle representing the sequence. The theorem relies on a generalization of Brouwer's fixed point theorem to the Hilbert cube and multi-valued continuous maps whose images are closed convex sets.
- A new variant of realizability, which we call uniform realizability that embodies the uniform oracle computations used in Miller's sequences.
In this talk I will present the general ideas, the construction of Miller's sequences, and outline uniform realizability.