Skip to main content

Functional analysis

Financial Mathematics, Second cycle
1 ali 2 year
first or second
slovenian, english
Hours per week – 1. or 2. semester:

There are no prerequisites.

Content (Syllabus outline)

Banach spaces. Linear operators and functionals on Banach spaces.The open mapping theorem. The closed graph theorem. The principle of uniform boundedness. The second dual.The adjoint operator on a Banach space . Weak topologies. The Banach-Alaoglu theorem.The Krein-Milman theorem on extreme points.Banach algebras. Ideals and quotients. The spectrum of an element. Riesz functional calculus. The Gelfand transform.C-algebras. Approximate units. Ideals and quotients. Commutative C-algebras. The functional calculus in C*-algebras. The Gelfand-Naimark-Segal construction.


B. Bollobás: Linear Analysis : An Introductory Course, 2nd edition, Cambridge Univ. Press, Cambridge, 1999.
J. B. Conway: A Course in Functional Analysis, 2nd edition, Springer, New York, 1990.
Y. Eidelman, V. Milman, A. Tsolomitis: Functional Analysis : An Introduction, AMS, Providence, 2004.
M. Hladnik: Naloge in primeri iz funkcionalne analize in teorije mere, DMFA-založništvo, Ljubljana, 1985.
R. Meise, D. Vogt: Introduction to Functional Analysis, Oxford Univ. Press, Oxford, 1997.
G. K. Pedersen: Analysis Now, Springer, New York, 1996.
W. Rudin: Functional Analysis, 2nd edition, McGraw-Hill, New York, 1991.
I. Vidav: Linearni operatorji v Banachovih prostorih, DMFA-založništvo, Ljubljana, 1982.
• I. Vidav: Banachove algebre, DMFA-založništvo, Ljubljana, 1982.
I. Vidav: Uvod v teorijo C*-algeber, DMFA-založništvo, Ljubljana, 1982.

Objectives and competences

Students learn the basics of functional analysis and links with other areas of analysis.

Intended learning outcomes

Knowledge and understanding: Understanding
basic concepts of functional analysis. Ability of the reconstruction (at least easier) proofs. Ability of the application of acquired knowledge.
Application: Functional analysis is used in natural sciences and other areas of science such as economics.
Reflection: Understanding of the theory on the basis of examples.
Transferable skills: Ability to use abstract methods to solve problems. Ability to use a wide range of references and critical thinking.

Learning and teaching methods

Lectures, exercises, homeworks, consultations


Written exam
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references

Roman Drnovšek:
DRNOVŠEK, Roman. Common invariant subspaces for collections of operators. Integral equations and operator theory, ISSN 0378-620X, 2001, vol. 39, no. 3, str. 253-266. [COBISS-SI-ID 10597721]
DRNOVŠEK, Roman. Invariant subspaces for operator semigroups with commutators of rank at most one. Journal of functional analysis, ISSN 0022-1236, 2009, vol. 256, iss. 12, str. 4187-4196. [COBISS-SI-ID 15167321]
DRNOVŠEK, Roman. An infinite-dimensional generalization of Zenger's lemma. Journal of mathematical analysis and applications, ISSN 0022-247X. [Print ed.], 2012, vol. 388, iss. 2, str. 1233-1238. [COBISS-SI-ID 16214617]
Peter Šemrl:
ŠEMRL, Peter. Applying projective geometry to transformations on rank one idempotents. Journal of functional analysis, ISSN 0022-1236, 2004, vol. 210, no. , str. 248-257. [COBISS-SI-ID 13012825]
ŠEMRL, Peter. Similarity preserving linear maps. Journal of operator theory, ISSN 0379-4024, 2008, vol. 60, no. 1, str. 71-83. [COBISS-SI-ID 15079257]
ŠEMRL, Peter. Symmetries on bounded observables: a unified approach based on adjacency preserving maps. Integral equations and operator theory, ISSN 0378-620X, 2012, vol. 72, iss. 1, str. 7-66. [COBISS-SI-ID 16568665]