There are no prerequisites.
Introduction to C* algebras
Banach algebras: ideals, quotients, holomorphic functional calculus, weak topology, Banach Alaoglu's theorem, Gelfand's transform.
C-algebras: order, approximate units, ideals,
quotients, the characterization of commutative C*-algebras, continuous functional calculus, states and representations, the universal representation.
Operator topologies and approximation theorems: von Neumann's bicommutation theorem, Kaplansky's density theorem and Kadison's transitivity theorem.
The spectral theorem for bounded normal operators: the Borel functional calculus, commutative von Neumann algebras, the group algebra .
- J. B. Conway: A course in functional analysis, 2nd ed., New York : Springer, cop. 1990.
- J. B. Conway: A Course in Operator Theory, GSM 91, Amer. Math. Soc., 2000.
- R. V. Kadison, J. R. Ringrose: Fundamentals of the theory of operator algebras. Vol. 1, Elementary theory, Providence : American Mathematical Society, cop. 1997.
- R. V. Kadison, J. R. Ringrose: Fundamentals of the theory of operator algebras. Vol. 2, Advanced theory, Providence : American Mathematical Society, cop. 1997.
- G. K. Pedersen: Analysis now, New York : Springer, cop. 1989.
- I. Vidav: Banachove algebre, Ljubljana : Društvo matematikov, fizikov in astronomov SR Slovenije, 1982.
- I. Vidav: Uvod v teorijo C*-algeber, Ljubljana : Društvo matematikov, fizikov in astronomov SRS, 1982.
- N. Weaver: Mathematical quantization, Boca Raton : Chapman & Hall/CRC, cop. 2001.
To master basic tools of spectral theory and their use in C*-algebras.
Knowledge and understanding: the basic knowledge on C-algebras may be useful also outside of mathematics, for example, it may facilitate the understanding of quantum physics.
Application: The acquired knowledge is applicable elsewhere in mathematics and mathematical physics.
Reflection: C-algebras are one of the basic active fields of modern mathematics.
Transferable skills:
An approach to problems using abstract methods.
Lectures, exercises, homeworks, consultations
2 midterm exams instead of written exam, written exam
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)
Matej Brešar:
BREŠAR, Matej, KISSIN, Edward, SHULMAN, Victor S. Lie ideals: from pure algebra to C[star]-algebras. Journal für die Reine und Angewandte Mathematik, ISSN 0075-4102, vol. 2008, b. 623, str. 73-121. [COBISS-SI-ID 14931289]
BREŠAR, Matej, ŠPENKO, Špela. Determining elements in Banach algebras through spectral properties. Journal of mathematical analysis and applications, ISSN 0022-247X. [Print ed.], 2012, vol. 393, iss. 1, str. 144-150. [COBISS-SI-ID 16287833]
BREŠAR, Matej, MAGAJNA, Bojan, ŠPENKO, Špela. Identifying derivations through the spectra of their values. Integral equations and operator theory, ISSN 0378-620X, 2012, vol. 73, no. 3, str. 395-411. [COBISS-SI-ID 16339289]