Skip to main content

Topics in numerical mathematics

2025/2026
Programme:
Doctoral Programme Mathematics and Physics
Orientation:
Mathematics
Year:
1 ali 2 year
Semester:
first or second
Kind:
optional
ECTS:
6
Language:
slovenian, english
Course director:
Lecturer (contact person):
Hours per week – 1. or 2. semester:
Lectures
2
Seminar
0
Tutorial
0
Lab
0
Prerequisites

There are no prerequisites.

Content (Syllabus outline)

The content consists of a selection of standard topics in postgraduate numerical mathematics. Possible themes include geometric interpolation and approximation by parametric polynomial curves and surfaces, multivariable polynomial interpolation, parametric curves and surfaces in CAGD (computer aided geometric design), wavelets in signal processing and image analysis, subdivision schemes for curves and surfaces, numerical methods for functions of matrices, iterative subspace methods and preconditioning, nonlinear eigenvalue problems, multiparameter eigenvalue problems, inverse eigenvalue problems,continuation methods, multigrid methods, spline theory, model reduction, ill-conditioned problems and regularization.The choice depends on students' research interests.

Readings
  1. Z. Bai ... [et al.], eds.: Templates for the solution of algebraic eigenvalue problems: a practical guide, Philadelphia : Society for Industrial and Applied Mathematics, cop. 2000.
  2. R. Barrett … [et al.]: Templates for the solution of linear systems : building blocks for iterative methods, Philadelphia : Society for Industrial and Applied Mathematics, cop. 1994.
  3. W. L. Biggs, V. E. Henson, S. F. McCormick: A multigrid tutorial, 2nd ed., Philadelphia, (PA) : Society for industrial and applied mathematics, cop. 2000.
  4. J. P. Boyd: Chebyshev and Fourier spectral methods, 2nd ed. (revised), Mineola : Dover, 2001.
  5. M. T. Chu, G. H. Golub: Inverse eigenvalue problems: theory, algorithms and applications, Numerical mathematics and Scientific Computation, Oxford : Oxford University Press, 2005.
  6. N. Dyn in D. Levin: Subdivision schemes in geometric modelling, Acta Numer. 11 (2002) 73-144.
  7. R. T. Farouki: Pythagorean-hodograph curves : algebra and geometry inseparable, Berlin : Springer, cop. 2008.
  8. P. C. Hansen: Rank-deficient and discrete ill-posed problems : numerical aspects of linear inversion, Philadelphia : SIAM, cop. 1998.
  9. N. J. Higham: Accuracy and stability of numerical algorithms, 2nd ed. - Philadelphia : Society for Industrial and Applied Mathematics, cop. 2002.
  10. N. J. Higham: Functions of matrices : theory and computation, Philadelphia : SIAM, cop. 2008.
Objectives and competences

The main goal of the course is to provide students with some important topics in numerical mathematics.

Intended learning outcomes

Knowledge and comprehension of presented concepts.
Ability to use acquired knowledge and skills.

Learning and teaching methods

Lectures, consultations, problem sessions

Assessment

Writen exam (homeworks), oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references

Bor Plestenjak:
HOCHSTENBACH, Michiel E., MUHIČ, Andrej, PLESTENJAK, Bor. On linearizations of the quadratic two-parameter eigenvalue problem. Linear Algebra and its Applications, ISSN 0024-3795. [Print ed.], 2012, vol. 436, iss. 8, str. 2725-2743. [COBISS-SI-ID 16095065]
MUHIČ, Andrej, PLESTENJAK, Bor. On the quadratic two-parameter eigenvalue problem and its linearization. Linear Algebra and its Applications, ISSN 0024-3795. [Print ed.], 2010, vol. 432, iss. 10, str. 2529-2542. [COBISS-SI-ID 15469913]
HOCHSTENBACH, Michiel E., KOŠIR, Tomaž, PLESTENJAK, Bor. A Jacobi-Davidson type method for the two-parameter eigenvalue problem. SIAM journal on matrix analysis and applications, ISSN 0895-4798, 2005, vol. 26, no. 2, str. 477-497. [COBISS-SI-ID 13613401]
Gašper Jaklič:
JAKLIČ, Gašper, ŽAGAR, Emil. Curvature variation minimizing cubic Hermite interpolants. Applied mathematics and computation, ISSN 0096-3003. [Print ed.], 2011, vol. 218, iss. 7, str. 3918-3924. [COBISS-SI-ID 16049241]
JAKLIČ, Gašper, ŽAGAR, Emil. Planar cubic G [sup] 1 interpolatory splines with small strain energy. Journal of Computational and Applied Mathematics, ISSN 0377-0427. [Print ed.], 2011, vol. 235, iss. 8, str. 2758-2765. [COBISS-SI-ID 15770969]
JAKLIČ, Gašper. On the dimension of bivariate spline space S [sub] 3 [sup] 1 ([triangle]). International journal of computer mathematics, ISSN 0020-7160, 2005, vol. 82, no. 11, str. 1355-1369. [COBISS-SI-ID 13801305]
Marjetka Krajnc:
JAKLIČ, Gašper, KOZAK, Jernej, KRAJNC, Marjetka, VITRIH, Vito, ŽAGAR, Emil. High order parametric polynomial approximation of conic sections. Constructive approximation, ISSN 0176-4276, 2013, vol. 38, iss. 1, str. 1-18. [COBISS-SI-ID 16716121]
KRAJNC, Marjetka. Interpolation scheme for planar cubic G [sup] 2 spline curves. Acta applicandae mathematicae, ISSN 0167-8019, 2011, vol. 113, no. 2, str. 129-143. [COBISS-SI-ID 16215385]
KRAJNC, Marjetka. Geometric Hermite interpolation by cubic G[sup]1 splines. Nonlinear Analysis, Theory, Methods and Applications, ISSN 0362-546X. [Print ed.], 2009, vol. 70, iss. 7, str. 2614-2626. [COBISS-SI-ID 15508569]
Emil Žagar:
JAKLIČ, Gašper, KOZAK, Jernej, VITRIH, Vito, ŽAGAR, Emil. Lagrange geometric interpolation by rational spatial cubic Bézier curves. Computer Aided Geometric Design, ISSN 0167-8396, 2012, vol. 29, iss. 3-4, str. 175-188. [COBISS-SI-ID 16207449]
KOZAK, Jernej, ŽAGAR, Emil. On geometric interpolation by polynomial curves. SIAM journal on numerical analysis, ISSN 0036-1429, 2004, vol. 42, no. 3, str. 953-967. [COBISS-SI-ID 13398617]
ŽAGAR, Emil. On G [sup] 2 continuous spline interpolation of curves in R [sup] d. BIT, ISSN 0006-3835, 2002, vol. 42, no. 3, str. 670-688. [COBISS-SI-ID 12027993]