Skip to main content

Physics laboratory IV

2023/2024
Programme:
Physics, First Cycle
Orientation:
Astronomy
Year:
2 year
Semester:
second
Kind:
mandatory
ECTS:
4
Language:
slovenian
Lecturer (contact person):
Hours per week – 2. semester:
Lectures
0
Seminar
0
Tutorial
0
Lab
4
Prerequisites

Class enrollment.

Content (Syllabus outline)

Acoustic resonator, Determination of the Boltzmann constant, Electooptic effect, Ferroelecticity – hysteresis loop, Franck Hertz experiment, Electronic elements current versus voltage dependence, Coupled electronic oscillators, Millikan experiment and the elementary charge, Diffraction of light, Ultrasound in materials, Spinning top, Ferromagnetism.

Readings

Navodila za vaje v Fizikalnem praktikumu II. Navodila so dostopna na spletu.
Only in Slovenian language.

Objectives and competences

Students perform a selection of simplified physics experiments with elements of modern measurement techniques. The experiments cover a majority of physics disciplines. There are some optional experiments that depend on the availabilty of equipment.

Intended learning outcomes

Knowledge and understanding:
Independent experimental work helps the students to strengthen their knowledge and gain practical experience. The students learn how to systematically observe new phenomena, how to approach the measurement and write laboratory records and reports

Application:
Use of modern ekperimental equipment, data aquisition and analysis.

Reflection:
Critically judging the eksperimental results and relating them to theoretical models. Testing the physics laws with everyday experience.

Transferable skills:
Mastering the use of different equipment, data aquisition methods and software. Laboratory skills are a prerequisite for experimental work.

Learning and teaching methods

Introductory lecture, independent work in the laboratory with consultations with the laboratory assistant, analysis of results presented in a form of a report.

Assessment

The assistants asses the quality of the measurement approach and performance
understanding and reporting
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references
  1. RIGLER, Martin, ZGONIK, Marko, HOFFMANN, Marc P., KIRSTE, Ronny,
    BOBEA, Milena, COLLAZO, R., SITAR, Zlatko, MITA, Seiji, GERHOLD, Michael.
    Refractive index of III-metal-polar and N-polar AlGaN waveguides grown by
    metal organic chemical vapor deposition. Appl. phys. lett., 2013, vol. 102, iss.
    22, str. 221106-1-221106-5. http://dx.doi.org/10.1063/1.4800554. [COBISS-SIID
    2561124]
  2. ŽABKAR, Janez, MARINČEK, Marko, ZGONIK, Marko. Mode competition during
    the pulse formation in passively Q-switched Nd: YAG lasers. IEEE j. quantum
    electron., 2008, vol. 44, no. 4, str. 312-318. [COBISS-SI-ID 21498151]
  3. ZGONIK, Marko, EWART, Michael, MEDRANO, Carolina, GÜNTER, Peter.
    Photorefractive effects in KNbO3. V: GÜNTER, Peter (ur.), HUIGNARD, Jean-
    Pierre (ur.). Photorefractive materials and their applications. 2, Materials,
    (Springer series in optical sciences, 114). New York: Springer, cop. 2007, str.
    205-240. [COBISS-SI-ID 1973604]
  4. DUELLI, M., MONTEMEZZANI, Germano, ZGONIK, Marko, GÜNTER, Peter.
    Photorefractive memories for optical processing. V: GÜNTER, Peter (ur.),
    HUIGNARD, Jean-Pierre (ur.). Photorefractive materials and their applications.
    3, Applications, (Springer series in optical sciences, 115). New York: Springer,
    cop. 2007, str. 77-134. [COBISS-SI-ID 1984100]
  5. MONTEMEZZANI, Germano, ZGONIK, Marko. Space-charge driven holograms
    in anisotropic media. V: GÜNTER, Peter (ur.), HUIGNARD, Jean-Pierre.
    Photorefractive materials and their applications. 1, Basic effects, (Springer
    series in optical sciences, 113). New York: Springer, cop. 2006, str. 83-118.
    [COBISS-SI-ID 1905252]