Skip to main content

Computational Tools in Physics

2025/2026
Programme:
Physics, First Cycle
Orientation:
Astronomy
Year:
1 year
Semester:
second
Kind:
optional
ECTS:
3
Language:
slovenian
Lecturer (contact person):
Hours per week – 2. semester:
Lectures
1
Seminar
0
Tutorial
2
Lab
0
Prerequisites

Admission to the first year. Fulfilled all the requirements of the Computing Laboratory lecture course.

Content (Syllabus outline)

Contact with computer work environments: operating systems, bash, scripting language. Introduction to LaTeX. Plotting. Presentation of distributions, histogram, moments, correlation. Linear and nonlinear regression. Basics of discrete numeric differentiation and integration. Solving systems of ordinary differential equations with suitable tools. First experience in scientific writing.

Readings
  1. Sodobni spletni viri obravnavanih orodij.
  2. Kuščer, Kodre, Matematika v fiziki in tehniki.
  3. Press et al, Numerical Recipes.
  4. Navodila za fizikalni praktikum.
Objectives and competences

Basic experience in the use of computer tools for data presentation and processing, numeric computation, presentation and writing of scientific content.

Intended learning outcomes

Knowledge and understanding: Understanding of the selection and implementation of computer algorithms.

Application: Graphical presentation of data and basic data processing.

Reflection: Visualization of data and results.

Transferable skills: Learn how to create reports. Become proficient in use of computer graphics and software tools.

Learning and teaching methods

Lectures, exercises, use of computers within classes, consultations, homeworks, final project.

Assessment

Grade is given for the final project. Homeworks completed in time are a precondition.
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references
  • A. Popadić, D. Svenšek, R. Podgornik, M. Praprotnik, Density–nematic coupling in isotropic linear polymers, Advanced Theory and Simulations (2019), doi:10.1002/adts.201900019.
  • D. Svenšek, H. Pleiner, H. R. Brand, A dynamic preferred direction model for the self-organization dynamics of bacterial microfluidic pumping, Soft Matter 15, 2032 (2019).
  • R. Prislan, D. Svenšek, Ray-tracing semiclassical (RTS) low frequency acoustic modeling validated for local and extended reaction boundaries, J. Sound Vib. 437, 1 (2018).
  • R. Prislan, G. Veble, D. Svenšek, Ray-trace modeling of acoustic Green’s function based on the semiclassical (eikonal) approximation, J. Acoust. Soc. Am. 140, 2695 (2016).
  • A. Goetzendorfer, C. A. Kruelle, I, Rehberg, D. Svenšek, Localied subharmonic waves in a circularly vibrated granular bed, Phys. Rev. Lett. 97, 198001 (2006).
  • T. Potisk, D. Svenšek, H. R. Brand, H. Pleiner, D. Lisjak, N. Osterman, A. Mertelj, Dynamic magneto-optic coupling in a ferromagnetic nematic liquid crystal, Phys. Rev. Lett. 119, 097802 (2017).
  • D. Svenšek, H. Pleiner, H. R. Brand, Collective stop-and-go dynamics of active bacteria swarms, Phys. Rev. Lett. 111, 228101 (2013).
  • D. Svenšek, H. Pleiner, H. R. Brand, Phase winding in chiral liquid crystal monolayers due to Lehmann effects, Phys. Rev. Lett. 96, 140601 (2016).