Skip to main content

Electronics in Physics

2025/2026
Programme:
Applied Physics, First Cycle
Year:
2 year
Semester:
second
Kind:
mandatory
ECTS:
7
Language:
slovenian
Lecturer (contact person):
Hours per week – 2. semester:
Lectures
3
Seminar
0
Tutorial
2
Lab
3
Prerequisites

(a) knowledge of mathematics obtained in the course Mathematics I
(b) knowledge of physics (electricity and magnetism) obtained in the course Physics II

Content (Syllabus outline)

Basics of circuit analysis: basic circuit elements, Kirchoff laws, linear circuits, Ohms law, node and loop analysis, DC values, AC values, transfer functions, input and output impedance, power

Semiconductor components and their properties: diode, bipolar transistor, unipolar transistor, thyristor, basic connections and circuits with semiconductor components; transistor as a switch, transistor as an amplifier, differential connection, operational amplifier

Analog electronics: Passive circuits (resistor divider, RC circuit, CR circuit, resonant circuit), time and frequency analysis, filters; operational amplifier and feedback, comparator, linear circuits with operational amplifiers (amplification, integration, differentiation), non-linear circuits with operational amplifiers (exponent, logarithm, peak detector, oscillator); feedback with low gain, stability

Digital electronics:  digital signals, coding; logic gates and tables, Boolean algebra, simplification; adder, multiplexor, decoder, re-coder. Flip-flop, counter, register and shift register, memory, synchronous counter, processor, programmable circuits

AD and DA conversion: properties, DA convertors (with operational amplifier, R-2R ladder), DA convertors (flash, successive approximation, dual-slope); sampling

Power supplies: requirements; mains connections, voltage reduction, rectification and regulation, safety elements, switching circuits

Modulated signals: amplitude modulation, frequency modulation, phase modulation, basic circuits for modulation and demodulation

Noise: sources and types of noise, thermal noise, quantization noise, equivalent noise sources, noise in amplifiers, signal to noise ratio, noise figure.

Readings

- Practical electronics for inventors (na spletu in knjižnici FMF) 

- Horrowitz & Hill: The Art Of Electronics (na spletu in knjižnici FMF) 

- D. Ponikvar: Zapiski za predavanja, Elektronika FMT (na spletu) 

- Bruce Carter: SLOA064A: A Differential Op-Amp Circuit Collection (na spletu) 

- D. Ponikvar: Predloge za vaje v praktikumu elektronike (na spletu) 

- D. Ponikvar: Predloge v PDF obliki: Lastnosti operacijskih ojačevalnikov in podatki proizvajalca, Odziv vezja drugega reda, Izmenično vzbujanje vezja, Regulacije, Modulirani signali, Šumi (vse na spletu) 

Objectives and competences

Objectives: To master the foundations of analog and digital electronics. Learn basic methods of modeling and design of electronic circuits.

Competences:
- Ability to design simple electronic circuits
- Understanding of electronic schemes
- Ability to search the literature

Intended learning outcomes

Knowledge and understanding:

Knowledge of the basic building blocks of electronic circuits, their operation and integration. Understanding the analysis procedures and the ability to design and optimize simple electronic circuits. Ability to read schematic diagrams and implement them. The use of basic electronic instruments and computer aids.

Learning and teaching methods

Lectures, exercises, lab work, homework.

Assessment

2 tests or written exam
Oral exam; condition: presence and reports on practical work in the lab, homework
5 - 10, a student passes the exam if he is graded from 6 to 10

Lecturer's references

[1] PONIKVAR, Dušan. An FPGA- based nuclear pulse generator with a

prescribed amplitude distribution. Nuclear instruments and methods in

physics research, Section A, Accelerators, spectrometers, detectors and

associated equipment, 2018, vol. 877, str. 371-374.

[2] PONIKVAR, Dušan. A simple subnanosecond light pulser. IEEE trans.

nucl. sci., 2012, vol. 59, no. 6, str. 3218-3220.

[3] PONIKVAR, Dušan. The measurement of the magnetic field of a wire

using a personal computer. Eur. J. Phys, 2006, 27, str. 875-883.

[4] PONIKVAR, Dušan. Projects with STM32F407 microcontroller : teorija

in opis eksperimentov za predmet Uporaba mikroprocesorjev : magistrski

študijski program Fizika , 2. stopnja. Ljubljana: Fakulteta za

matematiko in fiziko, 2015.

[5] PONIKVAR, Dušan. Digitalna elektronika za fizike. Ljubljana:

Fakulteta za matematiko in fiziko], 2009.

[6] PONIKVAR, Dušan. A faster PWM-based DAC. EDN, Jan. 2016, str. 30-33.

[7] ČADEŽ, Andrej, PONIKVAR, Dušan, et al. What brakes the Crab pulsar?.

Astronomy & astrophysics, let. 587, march 2016, a99,

str. 1-11.

[8] GERMANÀ, Claudio, ČADEŽ, Andrej, PONIKVAR, Dušan, et al. Aqueye

optical observations of the Crab Nebula pulsar. Astronomy &

astrophysics, ISSN 0004-6361, 2012, letn. 548, part 1, a47, str. 1-7.