Skip to main content

Applied physics laboratory III

2025/2026
Programme:
Applied Physics, First Cycle
Year:
2 year
Semester:
first
Kind:
mandatory
ECTS:
3
Language:
slovenian
Lecturer (contact person):
Hours per week – 1. semester:
Lectures
0.27
Seminar
0
Tutorial
0
Lab
3.73
Prerequisites

Enrollment into the program.

Content (Syllabus outline)

Electric field and electric potential, electric current loops/circuits and Kirchhoff's laws, parallel and series circuit, charging and discharging curves of capacitors, magnetic field, induction and inductivity, feromagnetism.

Readings

Navodila za vaje v Praktikumu aplikativne fizike III. Navodila so dostopna na spletu: http://predmeti.fmf.uni-lj.si/fizprak2
Instructions for Applied physics laboratory 3, available on the web site (slovene only).

Objectives and competences

Objectives:
Performing experiments from classical and modern physics with experimental equipment based on modern measurement methods typically found in research and industrial laboratories.

Competences:
practical skills in handling measuring systems
ability to address experimental issues in physical experiments
Ability to search for practical solutions in the literature and internet.
Relating practical skills to the obtained knowledge of fundamental physical principles.

Intended learning outcomes

Knowledge and understanding:

Students learn to relate the observation and measurement of physical phenomena, control of experimental parameters, handling logbook, performing basic data transfer and data analysis, presentation of obtained results in a form of a written final report on the experiment.

Learning and teaching methods

Individual experimental practice, consultations

Assessment

The assistants asses the quality of the measurement approach and performance
Understanding and reporting
5 - 10, a student passes the exam if he is graded from 6 to 10

Lecturer's references

(1) Olivieri, G.; Kladnik, G.; Cvetko, D.; Brown, M. A. Determination of the Valence Band Edge of Fe Oxide Nanoparticles Dispersed in Aqueous Solution through Resonant Photoelectron Spectroscopy from a Liquid Microjet. Nanoscale Adv. 2021, 3 (15), 4513–4518. https://doi.org/10.1039/d1na00275a.

(2) Doud, E. A.; Starr, R. L.; Kladnik, G.; Voevodin, A.; Montes, E.; Arasu, N. P.; Zang, Y.; Zahl, P.; Morgante, A.; Venkataraman, L.; Vázquez, H.; Cvetko, D.; Roy, X. Cyclopropenylidenes as Strong Carbene Anchoring Groups on Au Surfaces. J. Am. Chem. Soc. 2020, 142 (47), 19902–19906. https://doi.org/10.1021/jacs.0c10743.

(3) Low, J. Z.; Kladnik, G.; Patera, L. L.; Sokolov, S.; Lovat, G.; Kumarasamy, E.; Repp, J.; Campos, L. M.; Cvetko, D.; Morgante, A.; Venkataraman, L. The Environment-Dependent Behavior of the Blatter Radical at the Metal–Molecule Interface. Nano Lett. 2019, 19 (4), 2543–2548. https://doi.org/10.1021/acs.nanolett.9b00275.

(4) Schiros, T.; Kladnik, G.; Prezzi, D.; Ferretti, A.; Olivieri, G.; Cossaro, A.; Floreano, L.; Verdini, A.; Schenck, C.; Cox, M.; Gorodetsky, A. a.; Plunkett, K.; Delongchamp, D.; Nuckolls, C.; Morgante, A.; Cvetko, D.; Kymissis, I. Donor-Acceptor Shape Matching Drives Performance in Photovoltaics. Adv. Energy Mater. 2013, 3 (7), 894–902. https://doi.org/10.1002/aenm.201201125.

(5) Batra, A.; Kladnik, G.; Vázquez, H.; Meisner, J. S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, A.; Venkataraman, L. Quantifying Through-Space Charge Transfer Dynamics in π-Coupled Molecular Systems. Nat. Commun. 2012, 3, 1086. https://doi.org/10.1038/ncomms2083.