Class enrollment. Passed Applied physics laboratory III.
Applied physics laboratory IV
Electromagnetic radiation, alternating current, I(U) characteristics of electronic elements, pasive electronic filters and Bode plots, wireless energy transfer, optics and optical rays, interference and diffraction.
Navodila za vaje v Praktikumu aplikativne fizike IV. Navodila so dostopna na spletu: http://predmeti.fmf.uni-lj.si/fizprak2
Instructions for Applied physics laboratory 4, available on the web site (slovene only).
Students perform a selection of simplified physics experiments with elements of modern measurement techniques. The experiments follow the theoretical expertise gained during the Physics II course: electromagnetic radiation, alternating current, optics.
Knowledge and understanding:
Independent experimental work helps the students to strengthen their knowledge and gain practical experience. The students learn how to systematically observe new phenomena, how to approach the measurement and write laboratory records and reports
Application:
Use of modern ekperimental equipment, data aquisition and analysis.
Reflection:
Critically judging the eksperimental results and relating them to theoretical models. Testing the physics laws with everyday experience.
Transferable skills:
Mastering the use of different equipment, data aquisition methods and software. Laboratory skills are a prerequisite for experimental work.
Introductory lecture, independent work in the laboratory with consultations with the laboratory assistant, analysis of results presented in a form of a report.
The assistants asses the quality of the measurement approach and performance
Understanding and reporting
5 - 10, a student passes the exam if he is graded from 6 to 10
(1) Olivieri, G.; Kladnik, G.; Cvetko, D.; Brown, M. A. Determination of the Valence Band Edge of Fe Oxide Nanoparticles Dispersed in Aqueous Solution through Resonant Photoelectron Spectroscopy from a Liquid Microjet. Nanoscale Adv. 2021, 3 (15), 4513–4518. https://doi.org/10.1039/d1na00275a.
(2) Doud, E. A.; Starr, R. L.; Kladnik, G.; Voevodin, A.; Montes, E.; Arasu, N. P.; Zang, Y.; Zahl, P.; Morgante, A.; Venkataraman, L.; Vázquez, H.; Cvetko, D.; Roy, X. Cyclopropenylidenes as Strong Carbene Anchoring Groups on Au Surfaces. J. Am. Chem. Soc. 2020, 142 (47), 19902–19906. https://doi.org/10.1021/jacs.0c10743.
(3) Low, J. Z.; Kladnik, G.; Patera, L. L.; Sokolov, S.; Lovat, G.; Kumarasamy, E.; Repp, J.; Campos, L. M.; Cvetko, D.; Morgante, A.; Venkataraman, L. The Environment-Dependent Behavior of the Blatter Radical at the Metal–Molecule Interface. Nano Lett. 2019, 19 (4), 2543–2548. https://doi.org/10.1021/acs.nanolett.9b00275.
(4) Schiros, T.; Kladnik, G.; Prezzi, D.; Ferretti, A.; Olivieri, G.; Cossaro, A.; Floreano, L.; Verdini, A.; Schenck, C.; Cox, M.; Gorodetsky, A. a.; Plunkett, K.; Delongchamp, D.; Nuckolls, C.; Morgante, A.; Cvetko, D.; Kymissis, I. Donor-Acceptor Shape Matching Drives Performance in Photovoltaics. Adv. Energy Mater. 2013, 3 (7), 894–902. https://doi.org/10.1002/aenm.201201125.
(5) Batra, A.; Kladnik, G.; Vázquez, H.; Meisner, J. S.; Floreano, L.; Nuckolls, C.; Cvetko, D.; Morgante, A.; Venkataraman, L. Quantifying Through-Space Charge Transfer Dynamics in π-Coupled Molecular Systems. Nat. Commun. 2012, 3, 1086. https://doi.org/10.1038/ncomms2083.