Enrollment into the program, familiarity with the content of Quantum mechanics course.
Statistical physics A
Content (Syllabus outline):
Izbrana poglavja iz učbenikov:
F. Schwabl, Statistical Mechanics (Springer, Berlin, 2002).
K. Huang, Statistical Mechanics (John Wiley & Sons, New York, 1987).
P. Papon, J. Leblond in P. H. E. Meijer, The Physics of Phase Transitions (Springer, Berlin, 2002).
J.M. Yeomans, Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford, 1992).
N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, Urbana-Champain, 1992).
Application of methods of statistical physics for description and analysis of phenomena.
Knowledge and understanding:
Basic understanding of concepts in statistical physics, phase transitions and lattice models.
Application:
The analysis of equilibrium and non-equilibrium phenomena using the methods of statistical physics.
Reflection:
Critical evaluation of theoretical predictions using experimental results.
Transferable skills:
Understanding of phenomena and their explanation using experimental results.
Lectures, seminar excercises, home work, tutorial.
Written exam
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)
Spin thermopower in interacting quantum dots,
T. Rejec, R. Žitko, J. Mravlje, and A. Ramšak, Phys. Rev. B 85, 085117 (2012).
Exact nonadiabatic holonomic transformations of spin-orbit qubits,
T. Čadež, J.H. Jefferson, and A. Ramšak, Phys. Rev. Lett. 112, 150402 (2014).
Effect of assisted hopping on thermopower in an interacting quantum dot,
S.B. Tooski, A. Ramšak, B.R. Bulka, and R. Žitko, New J. Phys. 16, 055001 (2014).
Exact large-deviation statistics for a nonequilibrium quantum spin chain, M. Žnidarič, Phys. Rev. Lett. 112, 040602 (2014).