Skip to main content

Laser physics

2018/2019
Programme:
Physics, Second Cycle
Orientation:
Computational physics
Year:
1. in 2. year
Semester:
second
Kind:
optional
ECTS:
5
Language:
slovenian
Hours per week – 2. semester:
Lectures
2
Seminar
1
Tutorial
0
Lab
0
Prerequisites

Enrollment into the program.
Positive result from written exercises (or written exam) is necessary to enter the oral exam.

Content (Syllabus outline)

Light matter interaction. Spontaneous and stimulated emission, absorption. Spectral width of radiative transitions, natural width, homogeneous and inhomogeneous broadening. Einstein coefficients.
Optical resonators. Stable resonators, eigen modes and losses. Unstable laser resonators. Optical pumping and inverse population, optical amplification, saturation of amplification.
Lasers. Continuous wave single frequency operation. Rate equations, relaxation oscillations, spectral width and quantum noise. Pulsed operation . Q switching, mode locking.
Laser types. Gas lasers, solid state lasers, fiber lasers, semiconductor lasers.
Frequency stabilization of lasers, frequency comb, laser a alength and time standard.
Semiclasical model of laser operation. quantum treatment.

Readings
  1. O. Svelto, "Principles of Lasers," 5th ed., Springer, Berlin, 2010.
  2. Anthony E Siegman: "Lasers," University Science Books, Sausalito 1986, (or later editions)
Objectives and competences

Objectives:

The student shall:

  • acquire a thorough understanding of the theory of modern laser physics,
  • be able to describe the behavior and functionality of different types of modern lasers,

Competences:
Knowledge and understanding of principles of laser iperation and how they are applied in photonics.

Intended learning outcomes

Knowledge and understanding:
Ability to formulate reasonably complicated problems in laser physics and provide solutions to them.

Application:
Basic education for work in modern eksperimental optics, optical spectroscopy, medical optics, optical communicatins and other applications of various lasers.

Reflection:
Relation between quantum and classical physics, coherent and stochastic phenomena.

Transferable skills:
Mathematical modeling of relatively complex system, general principles of optics.

Learning and teaching methods

Lectures, exercises, consultations

Assessment

2 midterm exams instead or final written exam
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references

Marko Zgonik, redni profesor za področje fizike, izvoljen 2001, full professor of physics, elected 2001.

Nekaj zadnjih objav, a few publications:
1. A. Majkić, M. Zgonik, A. Petelin, M. Jazbinšek, B. Ruiz, C. Medrano, P.Gunter, Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystal OH1, Appl. Phys. Lett. 2014, vol. 105, str. 141115-1—141115-4.
2. RIGLER, Martin, ZGONIK, Marko, HOFFMANN, Marc P., KIRSTE, Ronny, BOBEA, Milena, COLLAZO, R., SITAR, Zlatko, MITA, Seiji, GERHOLD, Michael. Refractive index of III-metal-polar and N-polar AlGaN waveguides grown by metal organic chemical vapor deposition. Appl. phys. lett., 2013, vol. 102, iss. 22, str. 221106-1--221106-5.
3. ŽABKAR, Janez, MARINČEK, Marko, ZGONIK, Marko. Mode competition during the pulse formation in passively Q-switched Nd: YAG lasers. IEEE j. quantum electron., 2008, vol. 44, no. 4, str. 312-318.
4. ZGONIK, Marko, EWART, Michael, MEDRANO, Carolina, GÜNTER, Peter. Photorefractive effects in KNbO3. V: GÜNTER, Peter (ur.), HUIGNARD, Jean-Pierre (ur.). Photorefractive materials and their applications. 2, Materials, (Springer series in optical sciences, 114). New York: Springer, cop. 2007, str. 205-240.
5. DUELLI, M., MONTEMEZZANI, Germano, ZGONIK, Marko, GÜNTER, Peter. Photorefractive memories for optical processing. V: GÜNTER, Peter (ur.), HUIGNARD, Jean-Pierre (ur.). Photorefractive materials and their applications. 3, Applications, (Springer series in optical sciences, 115). New York: Springer, cop. 2007, str. 77-134.

Martin Čopič
1. VILFAN, Mojca, OSTERMAN, Natan, ČOPIČ, Martin, RAVNIK, Miha, ŽUMER, Slobodan, KOTAR, Jurij, BABIČ, Dušan, POBERAJ, Igor. Confinement effect on interparticle potential in nematic colloids. Phys. rev. lett. 101, 237801 (2008).
2. GORJAN, Martin, MARINČEK, Marko, ČOPIČ, Martin. Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibres. Opt. express, 17, 19814(2009).
3. PETELIN, Andrej, ČOPIČ, Martin. Observation of a soft mode of elastic instability in liquid crystal elastomers. Phys. rev. lett. 103, 077801 (2009).
4. MERTELJ, Alenka, REŠETIČ, Andraž, GYERGYEK, Sašo, MAKOVEC, Darko, ČOPIČ, Martin. Anisotropic microrheological properties of chain-forming magnetic fluids. Soft matter 7, 118 (2011).
5. MERTELJ, Alenka, CMOK, Luka, ČOPIČ, Martin, COOK, Gary, EVANS, Dean R. Critical behavior of director fluctuations in suspensions of ferroelectric nanoparticles in liquid crystals at the nematic to smectic-A phase transition. Phys. rev. E 85, 021705 (2012).