Skip to main content

Condensed Matter Physics

2023/2024
Programme:
Physics, Second Cycle
Orientation:
Condensed matter physics
Year:
1. in 2. year
Semester:
second
Kind:
optional
ECTS:
7
Language:
slovenian
Lecturer (contact person):
Hours per week – 2. semester:
Lectures
3
Seminar
1
Tutorial
0
Lab
0
Prerequisites

Enrollment into the program.
Positive result from qoloqia (or written exam) is necessary to enter the oral exam.

Content (Syllabus outline)

Chemical bond in solids: Van der Waals and molecular bond. Ionic bond, Madelung constant in crystals. Covalent bond: exchange interaction. Metallic binding. Hydrogen bond.
Dielectric properties of matter: Polarizability of atoms and molecules. Local electric fields of insulators. Clausius_Mossotti equation. Lattice oscillations in ionic crystals. Polaritons. Paraelectrics, piezoelectrics and ferroelectris. Phenomenological theory of structural phase transitions.
Magnetic properties of matter: Atomic susceptibility, Hund's rules. Langevin and Van Vleck paramagnetism, and Larmor diamagnetism. Ferromagnetism. Curie-Weiss law. Phase transition in mean field approximation. Critical phenomena: magnetisation, susceptibility, specific heat. Spin waves in ferromagnets. Antiferromagnetism, ferrimagnetism. Anisotropy, domain walls and hysterezis in ferromagnets.
Superconductivity: Basic properties of superconductors: ideal conductivity, Meissner effect. London equations, penetration depth, condensation energy. Coherence length. Energy gap. Cooper pairs. Microscopic theory of superconductivity. Macroscopic wave function. Quantisation of magnetic flux. Vortex lines. Superconductors of II. kind. Josephson effect, SQUID.
Mechanic properties of crystals: Point, line and surface defects. Dislocations: edge and screw dislocation. Mobility of dislocations. Plastic deformations. Mechanical properties of real materials.
Liquids: par correlation function, structure factor. Superfluidity.

Readings
  • N.W. Ashcroft, N.D. Mermin: Solid State Physics, Holt-Saunders 1976.
  • M.P. Marder: Condensed Matter Physics, J. Wiley, 2000.
  • G. Burns: Solid State Physics, Academic Press, 1990.
  • J.M. Ziman: Principles of the Theory of Solids, Cambridge University Press 1964,1972.
  • C. Kittel: Quantum Theory of Solids, J. Wiley 1963.
  • O. Madelung: Introduction to Solid-State Theory, Springer-Verlag 1978.
  • W. Harrison: Solid State Theory, McGraw-Hill, 1970.
  • S. M. Girvin, K. Yang: Modern Condensed Matter Physics, Cambridge University Press, 2019.
  • M. Glazer, G. Burns: Space Groups for Solid State Scientists, Academic Press, 2016.
  • T. Inui, Y. Tanabe, Y. Onodera: Group Theory and Its Applications in Physics, Springer, 1976.
  • G. D. Mahan: Condensed Matter in a Nutshell, Princeton University Press, 2011.
  • U. Roessler: Solid State Theory: An Introduction, Springer-Verlag, 2009.
  • M. L. Cohen, S. G. Louie: Fundamentals of Condensed Matter Physics, Cambridge University Press, 2016.
  • D. Arovas: Lecture Notes on Condensed Matter Physics, UCSD, 2023.
Objectives and competences

Basic understanding of dielectric, magnetic and mechanical properties of matter, collective ordered states and phase transitions at low temperatures.

Intended learning outcomes

Knowledge and understanding:
Understanding of basic principles of properties of condensed matter, collective phenomena and phase transitions.

Application:
Achieved knowledge enables basic understanding of condensed matter properties. It represents the foundation for comprehensive study of materials and their applications in modern technology.

Reflection:
Application of theoretical foundations of quantum mechanics and statistical physics to investigate and understand properties of real materials.

Transferable skills:
Transition from theoretical physical topics towards understanding of basic properties of condensed matter and its technological applications.

Learning and teaching methods

Lectures, exercises, consultations

Assessment

Written exam. Exam in problem solving can replace the written exam.
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references
  1. MIERZEJEWSKI, Marcin, PRELOVŠEK, Peter, BONČA, Janez. Einstein relation for a driven disordered quantum chain in the subdiffusive regime. Physical review letters. 2019, vol. 122, iss. 20, str. 206601-1-206601-7
  2. VIDMAR, Lev, KRAJEWSKI, Bartosz, BONČA, Janez, MIERZEJEWSKI, Marcin. Phenomenology of spectral functions in disordered spin chains at infinite temperature. Physical review letters. 2021, vol. 127, iss. 23, str. 230603-1-230603-7

  3. ŠUNTAJS, Jan, BONČA, Janez, PROSEN, Tomaž, VIDMAR, Lev. Quantum chaos challenges many-body localization. Physical review. E. 2020, vol. 102, iss. 6, str. 062144-1-062144-12

  4. BONČA, Janez. Spectral function of an electron coupled to hard-core bosons. Physical review. B. 2020, vol. 102, iss. 3, str. 035135-1-035135-9

  5. KRAJEWSKI, Bartosz, VIDMAR, Lev, BONČA, Janez, MIERZEJEWSKI, Marcin. Restoring ergodicity in a strongly disordered interacting chain. Physical review letters. 2022, vol. 129, iss. 26, str. 260601-1-260601-7

  6. BONČA, Janez, TRUGMAN, Stuart A. Electron removal spectral function of a polaron coupled to dispersive optical phonons. Physical review. B. 2022, vol. 106, iss. 17, str. 174303-1-174303-9

  7. Universal Magnetic Oscillations of dc Conductivity in the Incoherent Regime of Correlated Systems
    Jakša Vučičević, Rok Žitko
    Phys. Rev. Lett 127, 196601 (2021)

  8. Electrical conductivity in the Hubbard model: Orbital effects of magnetic field
    Jakša Vučičević, Rok Žitko
    Phys. Rev. B 104, 205101 (2021)
  9. Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid
    R. Žitko, G. G. Blesio, L. O. Manuel, A. A. Aligia
    Nat. Commun. 12, 6027 (2021)
  10. Kondo screening in a charge-insulating spinon metal
    M. Gomilšek, R. Žitko, M. Klanjšek, M. Pregelj, C. Baines, Y. Li, Q. M. Zhang, A. Zorko
    Nat. Phys. 15, 754 (2019)
  11. Conductivity in the Square Lattice Hubbard Model at High Temperatures: Importance of Vertex Corrections
    J. Vučičević, J. Kokalj, R. Žitko, N. Wentzell, D. Tanasković, and J. Mravlje
    Phys. Rev. Lett. 123, 036601 (2019)
  12. Mottness collapse without metallisation in the domain walls of triangular-lattice Mott insulator 1T-TaS2
    J. Skolimowski, Ya. Gerasimenko, R. Žitko
    Phys. Rev. Lett. 122, 036802 (2019)