Skip to main content

Functional analysis and algebra seminar

Lucijan Plevnik: Ohranjanje glavnih kotov
Functional analysis and algebra seminar
28. 5. 2012
Janko Marovt: Ohranjevalci zvezdica delne urejenosti
Functional analysis and algebra seminar
17. 5. 2012
Janez Šter: Čisti kolobarji
Functional analysis and algebra seminar
11. 5. 2012
Pawel Gladki: Spaces of orderings and their quotients
Functional analysis and algebra seminar
3. 5. 2012
Matej Brešar: Prepoznavanje elementov z njihovimi spektralnimi lastnostmi
Functional analysis and algebra seminar
13. 4. 2012
Peter Šemrl: Ohranjanje sosednosti I
Functional analysis and algebra seminar
6. 4. 2012
Clément de Seguins Pazzis: Large spaces of matrices with bounded rank
Functional analysis and algebra seminar
30. 3. 2012
Lucijan Plevnik: Preslikave na bistveno neskončnih idempotentih
Functional analysis and algebra seminar
23. 3. 2012
Tilen Marc: Uvod v matrične Liejeve grupe in njihove algebre
Functional analysis and algebra seminar
16. 3. 2012
Nik Stopar: Algebre nad neštevnimi polji
Functional analysis and algebra seminar
8. 3. 2012
Jure Kališnik: Hopfove algebre diferencialnih operatorjev
Functional analysis and algebra seminar
5. 3. 2012
Tina Rudolf: Refleksivnostni defekt jedra elementarnega operatorja dolžine 2
Functional analysis and algebra seminar
24. 2. 2012
Thomas Schlumprecht: Shift invariant preduals of $\ell_1(\Z)$
The Banach space $\ell_1(\Z)$ admits many non-isomorphic preduals, for example, $C(K)$ for any compact countable space $K$, along with many more exotic Banach spaces. In this paper, we impose an extra condition: the predual must make the bilateral shift on $\ell_1(\Z)$ weak$^*$-continuous. This is equivalent to making the natural convolution multiplication on $\ell_1(\Z)$ separately weak$*$-continuous and so turning $\ell_1(\Z)$ into a dual Banach algebra. We call such preduals \emph{shift-invariant}. It is known that the only shift-invariant predual arising from the standard duality between $C_0(K)$ (for countable locally compact $K$) and $\ell_1(\Z)$ is $c_0(\Z)$. We provide an explicit construction of an uncountable family of distinct preduals which do make the bilateral shift weak$^*$-continuous. Using Szlenk index arguments, we show that merely as Banach spaces, these are all isomorphic to $c_0$. We then build some theory to study such preduals, showing that they arise from certain semigroup compactifications of $\Z$. This allows us to produce a large number of other examples, including non-isometric preduals, and preduals which are not Banach space isomorphic to $c_0$.
Functional analysis and algebra seminar
20. 1. 2012
Bojan Magajna: Spektri elementarnih operatorjev
Functional analysis and algebra seminar
16. 1. 2012
Jure Kališnik: Liejeve algebre diferencialnih operatorjev II
Functional analysis and algebra seminar
10. 1. 2012
Jure Kališnik: Liejeve algebre diferencialnih operatorjev
Functional analysis and algebra seminar
3. 1. 2012
Aljaž Zalar: Matrične posplošitve Farkaseve leme
Functional analysis and algebra seminar
16. 12. 2011
Dominik Benkovič: Študij preslikav na trikotnih algebrah
Functional analysis and algebra seminar
10. 12. 2011
Primož Moravec: Korazred končnih p-grup
Functional analysis and algebra seminar
6. 12. 2011
Urban Jezernik: Predvsem skrčeni Burnsideov problem
Functional analysis and algebra seminar
29. 11. 2011