Skip to main content

Analysis 3

2019/2020
Programme:
Financial mathematics, First Cycle
Year:
2 year
Semester:
first
Kind:
mandatory
ECTS:
9
Language:
slovenian
Lecturer (contact person):
Hours per week – 1. semester:
Lectures
4
Seminar
0
Tutorial
4
Lab
0
Prerequisites

Completed courses Analysis 1 and Analysis 2.

Content (Syllabus outline)

Parametric integral, gamma and beta functions.
Double and triple integral with most common applications.
Curves and surfaces in space, tangent to a curve, normal to a surface.
Curve integral, surface integral, arc length, area of a surface and other applications.
Fundamentals of vector analysis, Gauss and Stokes theorem.
Holomorphic functions. Integral of a holomorphic function. Cauchy theorem. Series expansion of a holomorphic function.
Simple partial differential equations. Wave equation. Heat equation.
Fundamentals of metric spaces. Fixed point theorem.

Readings

I. Vidav: Matematika III, DZS, Ljubljana, 1976.
M. H. Protter, C. B. Morrey: Intermediate Calculus, New York, Springer, 1985.
E. Kreyszig: Advanced Engineering Mathematics, Huboken, J.Wiley, 2006.
S. Lang: Calculus of Several Variables, 3rd edition, Springer, New York, 1996.
I. N. Sneddon: Elements of Partial Differential Equations, McGraw-Hill, New York-Toronto-London,1957.
G. Tomšič, T. Slivnik: Matematika III, Založba FE in FRI, Ljubljana, 2001.
P. Mizori-Oblak: Matematika za študente tehnike in naravoslovja II, Fakulteta za strojništvo, Ljubljana, 2003.
P. DuChateau, D. W. Zachman: Schaum's Outline of Theory and Problems of Partial Differerential Equations, McGraw-Hill, New York, 1986.

Objectives and competences

Extension of the basic knowledge of analysis, understanding of complex concepts and principles and their application in mathematics, natural science, engineering, and other disciplines.

Intended learning outcomes

Knowledge and understanding: Knowledge and understanding of concepts of differential and integral calculus of several variables and partial differential equations.
Application: The course is the continuation of Analysis 1 and Analysis 2. The material is later used in most of the professional courses.
Reflection: Integration of the acquired knowledge and its application in other areas.
Transferable skills: The ability of clear definition of problems in mathematical language and the choice of appropriate methods. Ability to use domestic and foreign literature.

Learning and teaching methods

Lectures, exercises, consultations

Assessment

2 midterm exams instead of written exam, written exam
Oral exam
grading: 5 (fail), 6-10 (pass) (according to the Statute of UL)

Lecturer's references

Barbara Drinovec Drnovšek:
DRINOVEC-DRNOVŠEK, Barbara, FORSTNERIČ, Franc. Strongly pseudoconvex domains as subvarieties of complex manifolds. American journal of mathematics, ISSN 0002-9327, 2010, vol. 132, no. 2, str. 331-360. [COBISS-SI-ID 15549529]
DRINOVEC-DRNOVŠEK, Barbara, FORSTNERIČ, Franc. Approximation of holomorphic mappings on strongly pseudoconvex domains. Forum mathematicum, ISSN 0933-7741, 2008, vol. 20, iss. 5, str. 817-840. [COBISS-SI-ID 15078745]
DRINOVEC-DRNOVŠEK, Barbara. Proper discs in Stein manifolds avoiding complete pluripolar sets. Mathematical research letters, ISSN 1073-2780, 2004, vol. 11, no. 5-6, str. 575-581. [COBISS-SI-ID 13311065]
Franc Forstnerič:
FORSTNERIČ, Franc. Holomorphic families of long c [sup] 2's. Proceedings of the American Mathematical Society, ISSN 0002-9939, 2012, vol. 140, no. 7, str. 2383-2389. [COBISS-SI-ID 16435289]
FORSTNERIČ, Franc. Stein manifolds and holomorphic mappings : the homotopy principle in complex analysis, (Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, vol. 56). Heidelberg [etc.]: Springer, cop. 2011. X, 489 str., ilustr. ISBN 978-3-642-22249-8. ISBN 978-3-642-22250-4. [COBISS-SI-ID 16008025]
FORSTNERIČ, Franc, WOLD, Erlend Fornæss. Fibrations and Stein neighborhoods. Proceedings of the American Mathematical Society, ISSN 0002-9939, 2010, vol. 138, no. 6, str. 2037-2042. [COBISS-SI-ID 15876441]
Pavle Saksida:
SAKSIDA, Pavle. Lattices of Neumann oscillators and Maxwell-Bloch equations. Nonlinearity, ISSN 0951-7715, 2006, vol. 19, no. 3, str. 747-768. [COBISS-SI-ID 13932377]
SAKSIDA, Pavle. Maxwell-Bloch equations, C Neumann system and Kaluza-Klein theory. Journal of physics. A, Mathematical and general, ISSN 0305-4470, 2005, vol. 38, no. 48, str. 10321-10344. [COBISS-SI-ID 13802073]
SAKSIDA, Pavle. Nahm's equations and generalizations Neumann system. Proceedings of the London Mathematical Society, ISSN 0024-6115, 1999, let. 78, št. 3, str. 701-720. [COBISS-SI-ID 8853849]