• Optimizacijske naloge in problemi, primeri, podobne in enakovredne naloge,
• rešljivost, globalni in lokalni ekstremi,
• lokalna optimizacija, konveksnost, reševanje v Rn, sedla, prirejene in dualne naloge,
• Lagrangeova prirejenost, Karush‐Kuhn‐Tuckerjev izrek, numerični postopki, kazenske metode,
• linearno programiranje, metoda simpleksov, dualne naloge,
• diskretne optimizacijske naloge, zahtevnost problemov, pristopi k reševanju diskretnih nalog,
primeri (predavatelj izbere nekatere izmed naslednjih tem: najcenejši razvoz, pretoki po omrežju, prirejanja in pokritja, barvanje grafov, razvrščanje v skupine, ...).
Optimizacijske metode
prof. dr. Marko Petkovšek, izr. prof. dr. Arjana Žitnik
Vašek Chvátal: Linear Programming, W. H. Freeman and Co., New York, 1983
B. H. Korte, J. Vygen: Combinatorial Optimization : Theory and Algorithms, 3. izdaja, Springer, Berlin, 2006.
Stephen Boyd, Lieven Vandenberghe: Convex Optimization, Cambridge University Press, Cambridge, 2004
V. Batagelj: Optimizacijske metode, Zapiski predavanj, Ljubljana.http://vlado.fmf.uni-lj.si/vlado/optim/opt1.pdfhttp://vlado.fmf.uni-lj.si/vlado/optim/lp.pdf
V. Batagelj, M. Kaufman: Naloge iz optimizacijskih metod, Ljubljana.http://vlado.fmf.uni-lj.si/vlado/optim/optnal.pdf
Jiří Matoušek, Bernd Gärtner: Understanding and Using Linear Programming, Springer 2007
M.Minoux: Mathematical programming. Theory and algorithms. Wiley, Chichester, 1986
M.S.Bazaraa, H.D.Sherali, C.M.Shetty: Nonlinear Programming, Theory and Algorithms. Wiley, New York 1993.
C.H.Papadimitriou, K.Steiglitz: Combinatorial optimization: Algorithms and complexity. Prentice‐Hall, Englewood Cliffs, New Jersey 1990
Podati v poenoteni obliki osnovna znanja o ``zvezni'' in kombinatorični optimizaciji.
Znanje in razumevanje: Študent pridobi osnovno znanje o zvezni in kombinatorični optimizaciji. Obvlada temeljne optimizacijske postopke in jih zna uporabiti ob pomoči računalnika.
Uporaba: Reševanje optimizacijskih problemov v vsakdanjem življenju.
Refleksija: Pomen ustreznega modeliranja problemov iz uporabe za njihovo učinkovito reševanje.
Prenosljive spretnosti – niso vezane le na en predmet: Sposobnost predstavitve različnih praktičnih problemov v obliki matematičnih optimizacijskih nalog. Veščina uporabe izbranega programskega orodja za reševanje osnovnih optimizacijskih problemov.
predavanja, vaje, domače naloge, konzultacije
Domače naloge ali projekt
Pisni izpit
Ustni izpit
(ocene: 5 (negativno), 6-10 (pozitivno), ob upoštevanju Statuta UL)
Marko Petkovšek:
ABRAMOV, Sergei A., PETKOVŠEK, Marko. Polynomial ring automorphisms, rational (w, [sigma])-canonical forms, and the assignment problem. Journal of symbolic computation, ISSN 0747-7171, 2010, vol. 45, no. 6, str. 684-708. [COBISS-SI-ID 15580505]
BRESSLER, Andrew, GREENWOOD, Torin, PEMANTLE, Robin, PETKOVŠEK, Marko. Quantum random walk on the integer lattice: examples and phenomena. V: AMS Special Sessions on Algorithmic Probability and Combinatorics, October 5-6, 2007, DePaul University, Chicago (Illinois), October 4-5, 2008, University of British Columbia, Vancouver (BC, Canada). LLADSER, Manuel (ur.), et al. Algorithmic probability and combinatorics : AMS special sessions on algorithmic probability and combinatorics, October 5-6, 2007, DePaul University, Chicago, Illinois, October 4-5, 2008, University of British Columbia, Vancouver, BC, Canada, (Contemporary mathematics, ISSN 0271-4132, 520). Providence: American Mathematical Society, cop. 2010, str. 41-60. [COBISS-SI-ID 15813977]
ABRAMOV, Sergei A., BARKATOU, Moulay A., VAN HOEIJ, Mark, PETKOVŠEK, Marko. Subanalytic solutions of linear difference equations and multidimensional hypergeometric sequences. Journal of symbolic computation, ISSN 0747-7171, 2011, vol. 46, iss. 11, str. 1205-1228. [COBISS-SI-ID 16083033]
Arjana Žitnik:
MILANIČ, Martin, PISANSKI, Tomaž, ŽITNIK, Arjana. Dilation coefficient, plane-width, and resolution coefficient of graphs. Monatshefte für Mathematik, ISSN 0026-9255, 2013, vol. 170, no. 2, str. 179-193. [COBISS-SI-ID 1024499540]
PISANSKI, Tomaž, ŽITNIK, Arjana. Representing graphs and maps. V: BEINEKE, Lowell W. (ur.), WILSON, Robin J. (ur.). Topics in topological graph theory, (Encyclopedia of mathematics and its applications, ISSN 0953-4806, 128). Cambridge [etc.]: Cambridge University Press, cop. 2009, str. 151-180. [COBISS-SI-ID 15227481]
ŽITNIK, Arjana. Series parallel extensions of plane graphs to dual-eulerian graphs. Discrete Mathematics, ISSN 0012-365X. [Print ed.], 2007, vol. 307, iss. 3-5, str. 633-640. [COBISS-SI-ID 14183769]